metadata
language: tr
Dataset: interpress_news_category_tr
INTERPRESS NEWS CLASSIFICATION
Dataset
The dataset downloaded from interpress. This dataset is real world data. Actually there are 273K data but I filtered them and used 108K data for this model. For more information about dataset please visit this link
Model
Model accuracy on train data and validation data is %97. The data split as %80 train and %20 validation. The results as shown as below
Usage for Torch
pip install transformers or pip install transformers==4.3.3
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("serdarakyol/interpress-turkish-news-classification")
model = AutoModelForSequenceClassification.from_pretrained("serdarakyol/interpress-turkish-news-classification")
import torch
import numpy as np
if torch.cuda.is_available():
device = torch.device("cuda")
model = model.cuda()
print('There are %d GPU(s) available.' % torch.cuda.device_count())
print('GPU name is:', torch.cuda.get_device_name(0))
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
def prediction(news):
news=[news]
indices=tokenizer.batch_encode_plus(
news,
max_length=512,
add_special_tokens=True,
return_attention_mask=True,
padding='max_length',
truncation=True,
return_tensors='pt')
inputs = indices["input_ids"].clone().detach().to(device)
masks = indices["attention_mask"].clone().detach().to(device)
with torch.no_grad():
output = model(inputs, token_type_ids=None,attention_mask=masks)
logits = output[0]
logits = logits.detach().cpu().numpy()
pred = np.argmax(logits,axis=1)[0]
return pred
news = r"ABD'den Prens Selman'a yaptırım yok Beyaz Saray Sözcüsü Psaki, Muhammed bin Selman'a yaptırım uygulamamanın \"doğru karar\" olduğunu savundu. Psaki, \"Tarihimizde, Demokrat ve Cumhuriyetçi başkanların yönetimlerinde diplomatik ilişki içinde olduğumuz ülkelerin liderlerine yönelik yaptırım getirilmemiştir\" dedi."
You can find the news in this link (news date: 02/03/2021)
labels = {
0 : "Culture-Art",
1 : "Economy",
2 : "Politics",
3 : "Education",
4 : "World",
5 : "Sport",
6 : "Technology",
7 : "Magazine",
8 : "Health",
9 : "Agenda"
}
pred = prediction(news)
print(labels[pred])
# > World
Usage for Tensorflow
pip install transformers or pip install transformers==4.3.3
import tensorflow as tf
from transformers import BertTokenizer, TFBertForSequenceClassification
import numpy as np
tokenizer = BertTokenizer.from_pretrained('serdarakyol/interpress-turkish-news-classification')
model = TFBertForSequenceClassification.from_pretrained("serdarakyol/interpress-turkish-news-classification")
inputs = tokenizer(news, return_tensors="tf")
inputs["labels"] = tf.reshape(tf.constant(1), (-1, 1)) # Batch size 1
outputs = model(inputs)
loss = outputs.loss
logits = outputs.logits
pred = np.argmax(logits,axis=1)[0]
labels[pred]
# > World
Thanks to @yavuzkomecoglu for contributes
If you have any question, please, don't hesitate to contact with me