metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- superb
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-ks-balanced2
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: superb
type: superb
config: ks
split: validation
args: ks
metrics:
- name: Accuracy
type: accuracy
value: 0.48602530155928214
wav2vec2-base-finetuned-ks-balanced2
This model is a fine-tuned version of facebook/wav2vec2-base on the superb dataset. It achieves the following results on the evaluation set:
- Loss: 1.6199
- Accuracy: 0.4860
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.4624 | 0.99 | 79 | 1.8039 | 0.4685 |
0.8255 | 1.99 | 159 | 1.6513 | 0.4843 |
0.6409 | 3.0 | 239 | 1.6199 | 0.4860 |
0.5099 | 4.0 | 319 | 1.6686 | 0.4790 |
0.4903 | 4.95 | 395 | 1.7152 | 0.4682 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3