saraleivam's picture
Add new SentenceTransformer model.
0f16d34 verified
---
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:500
- loss:SoftmaxLoss
widget:
- source_sentence: Reportando a Mánager ventasLograr un crecimiento sostenible de
los ingresos mediante la negociación, cierre, implementación y cumplimiento de
acuerdos con los diferentes clientes.Encargado de realizar la búsqueda y apertura
de nuevos clientes a nivel LATAM . Entender requerimientos y saber asesorar de
la mejor manera para un buen cierre de negocio. Alto conocimiento en la línea
de flotas y Camiones.
sentences:
- Modernize Infrastructure and Applications with Google Cloud.Data Science.Business
Strategy.Understand the role that cloud modernization and migration plays in an
organization's digital transformation.. Examine available options to run compute
workloads in the cloud.. Explore the advantages of using containers, serverless
computing, and APIs in application modernization.. Learn about the business reasons
to choose hybrid or multi-cloud strategies, and how GKE Enterprise can help support
these strategies.
- Microsoft 365 Copilot for Leaders.Data Science.Machine Learning.Risk Management
- 'Decoding AI: A Deep Dive into AI Models and Predictions.Data Science.Machine
Learning.Learn key concepts and terminology in artificial intelligence (AI), including
machine learning, generative AI, and deep learning . Learn the core components
of machine learning systems, including data, models, and evaluation techniques.
Recognize why AI systems can fail and identify the kinds of work required to make
useful technology. Identify common pitfalls in conversations about AI and recognize
conflicts of interest when interpreting claims about AI systems'
- source_sentence: Reportando a Mánager ventasLograr un crecimiento sostenible de
los ingresos mediante la negociación, cierre, implementación y cumplimiento de
acuerdos con los diferentes clientes.Encargado de realizar la búsqueda y apertura
de nuevos clientes a nivel LATAM . Entender requerimientos y saber asesorar de
la mejor manera para un buen cierre de negocio. Alto conocimiento en la línea
de flotas y Camiones.
sentences:
- 'Getting Started with BigQuery Machine Learning.Data Science.Cloud Computing.How
to create, evaluate and use machine learning models in BigQuery. '
- Convolutional Neural Networks.Data Science.Machine Learning.Artificial Neural
Networks, Computer Vision, Machine Learning, Applied Machine Learning, Deep Learning,
Machine Learning Software, Machine Learning Algorithms, Network Model, Tensorflow,
Network Architecture, Human Learning
- 'Understanding Plants - Part II: Fundamentals of Plant Biology.Data Science.Basic
Science.Understanding Plants - Part II: Fundamentals of Plant Biology'
- source_sentence: Reportando a Mánager ventasLograr un crecimiento sostenible de
los ingresos mediante la negociación, cierre, implementación y cumplimiento de
acuerdos con los diferentes clientes.Encargado de realizar la búsqueda y apertura
de nuevos clientes a nivel LATAM . Entender requerimientos y saber asesorar de
la mejor manera para un buen cierre de negocio. Alto conocimiento en la línea
de flotas y Camiones.
sentences:
- Introduction to Computer Science and Programming.Data Science.Software Development.1.
Use the Javascript language to create interactive programs in the browser with
2D graphics.. 2. Convert between number bases, work with modular arithmetic, sequences
and series and plot graphs.. 3. Develop and use mental models to describe the
workings of a range of computer systems.
- Programming Languages, Part A.Data Science.Software Development.Computer Programming,
Programming Principles, Algorithms, Critical Thinking
- 'Global Health Innovations.Data Science.Public Health.Describe the principles
and key types of innovation in order to characterise the fundamental features
of new models of care and technologies. Compare and contrast systems that support
the development, investment, and protection of healthcare innovation to navigate
the innovation journey. Evaluate key factors influencing the adoption and scaling
of different healthcare innovations, and examine the reasons why some innovations
fail . Critique a particular innovation, using a given framework, in order to
make a recommendation to a panel of decision makers. '
- source_sentence: Reportando a Mánager ventasLograr un crecimiento sostenible de
los ingresos mediante la negociación, cierre, implementación y cumplimiento de
acuerdos con los diferentes clientes.Encargado de realizar la búsqueda y apertura
de nuevos clientes a nivel LATAM . Entender requerimientos y saber asesorar de
la mejor manera para un buen cierre de negocio. Alto conocimiento en la línea
de flotas y Camiones.
sentences:
- Development of Secure Embedded Systems.Data Science.Computer Security and Networks.Operating
Systems, Systems Design, Computer Programming, System Software, Computer Architecture,
Computer Networking, C Programming Language Family, Computer Programming Tools,
Hardware Design, Networking Hardware, System Programming, Theoretical Computer
Science, Algorithms
- GST - Genesis and imposition!.Data Science.Finance.Explain the genesis of GST,
the need for its introduction and the Constitutional and legal framework under
which it was introduced. . Identify and describe different forms of supplies
of goods and services, deemed supplies and transactions excluded from the scope
of supply.. Differentiate various types of supplies and identify whether a supply
is inter-State or intra-State, exempt or composite supply.. Critically analyse
whether a given transaction is a supply and define the nature of supply.
- 'AI for Project Managers and Scrum Masters.Data Science.Business Essentials.Identify
key elements of AI for Project Management . Evaluate AI Tools and Techniques for
Projects . Integrate AI into Project Lifecycles '
- source_sentence: Reportando a Mánager ventasLograr un crecimiento sostenible de
los ingresos mediante la negociación, cierre, implementación y cumplimiento de
acuerdos con los diferentes clientes.Encargado de realizar la búsqueda y apertura
de nuevos clientes a nivel LATAM . Entender requerimientos y saber asesorar de
la mejor manera para un buen cierre de negocio. Alto conocimiento en la línea
de flotas y Camiones.
sentences:
- Introduction to Data Science and scikit-learn in Python.Data Science.Data Analysis.Employ
artificial intelligence techniques to test hypothesis in Python. Apply a machine
learning model combining Numpy, Pandas, and Scikit-Learn
- 'Planejamento de projetos: Como reunir tudo.Data Science.Leadership and Management.Descrever
os componentes da fase de planejamento e a significância deles.. Identificar ferramentas
e práticas recomendadas para criar um plano de projeto e um plano de gestão de
riscos. . Descrever como estimar, acompanhar e manter um orçamento.. Elaborar
um plano de comunicação e explicar como gerenciá-lo.'
- Microsoft 365 Copilot for Leaders.Data Science.Machine Learning.Risk Management
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("saraleivam/GURU-paraphrase-multilingual-MiniLM-L12-v2")
# Run inference
sentences = [
'Reportando a Mánager ventasLograr un crecimiento sostenible de los ingresos mediante la negociación, cierre, implementación y cumplimiento de acuerdos con los diferentes clientes.Encargado de realizar la búsqueda y apertura de nuevos clientes a nivel LATAM . Entender requerimientos y saber asesorar de la mejor manera para un buen cierre de negocio. Alto conocimiento en la línea de flotas y Camiones.',
'Introduction to Data Science and scikit-learn in Python.Data Science.Data Analysis.Employ artificial intelligence techniques to test hypothesis in Python. Apply a machine learning model combining Numpy, Pandas, and Scikit-Learn',
'Planejamento de projetos: Como reunir tudo.Data Science.Leadership and Management.Descrever os componentes da fase de planejamento e a significância deles.. Identificar ferramentas e práticas recomendadas para criar um plano de projeto e um plano de gestão de riscos. . Descrever como estimar, acompanhar e manter um orçamento.. Elaborar um plano de comunicação e explicar como gerenciá-lo.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 500 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 85 tokens</li><li>mean: 85.0 tokens</li><li>max: 85 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 65.22 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>0: ~10.80%</li><li>1: ~13.20%</li><li>2: ~76.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>Reportando a Mánager ventasLograr un crecimiento sostenible de los ingresos mediante la negociación, cierre, implementación y cumplimiento de acuerdos con los diferentes clientes.Encargado de realizar la búsqueda y apertura de nuevos clientes a nivel LATAM . Entender requerimientos y saber asesorar de la mejor manera para un buen cierre de negocio. Alto conocimiento en la línea de flotas y Camiones.</code> | <code>Launching Your Music Career.Data Science.Music and Art.Articulate your Unique Selling Proposition.. Use the Business Model Canvas to determine the core functions required to effectively manage your portfolio career.. Complete a comprehensive growth and recruitment plan for your teaching studio and identify the competitive landscape.. Seek out and book performance opportunities in a variety of settings.</code> | <code>2</code> |
| <code>Reportando a Mánager ventasLograr un crecimiento sostenible de los ingresos mediante la negociación, cierre, implementación y cumplimiento de acuerdos con los diferentes clientes.Encargado de realizar la búsqueda y apertura de nuevos clientes a nivel LATAM . Entender requerimientos y saber asesorar de la mejor manera para un buen cierre de negocio. Alto conocimiento en la línea de flotas y Camiones.</code> | <code>Robotics.Data Science.Electrical Engineering.Motion Planning. Matlab. Estimation</code> | <code>2</code> |
| <code>Reportando a Mánager ventasLograr un crecimiento sostenible de los ingresos mediante la negociación, cierre, implementación y cumplimiento de acuerdos con los diferentes clientes.Encargado de realizar la búsqueda y apertura de nuevos clientes a nivel LATAM . Entender requerimientos y saber asesorar de la mejor manera para un buen cierre de negocio. Alto conocimiento en la línea de flotas y Camiones.</code> | <code>Core Java.Data Science.Software Development.Learn the basic syntax and functions of the Java programming language. Apply object-oriented programming techniques to building classes, creating objects, and understanding how solutions are packaged in Java.. Learn how to implement inheritance and polymorphism in Java.. Use selected parts of the vast Java SE class library to enhance your Java programming techniques.</code> | <code>2</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
### Training Hyperparameters
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3.0
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers and SoftmaxLoss
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->