|
--- |
|
library_name: transformers |
|
datasets: |
|
- hypervariance/function-calling-sharegpt |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
Gemma 2B function calling. [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) finetuned on [hypervariance/function-calling-sharegpt](https://huggingface.co/datasets/hypervariance/function-calling-sharegpt). |
|
|
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM , AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("rodrigo-pedro/gemma-2b-function-calling", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("rodrigo-pedro/gemma-2b-function-calling", trust_remote_code=True, device_map="auto") |
|
|
|
inputs = tokenizer(prompt,return_tensors="pt").to(model.device) |
|
|
|
outputs = model.generate(**inputs,do_sample=True,temperature=0.1,top_p=0.95,max_new_tokens=100) |
|
|
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
You can also use sharegpt formatted prompts: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM , AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("rodrigo-pedro/gemma-2b-function-calling", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("rodrigo-pedro/gemma-2b-function-calling", trust_remote_code=True, device_map="auto") |
|
|
|
chat = [ |
|
{ |
|
"from": "system", |
|
"value": "SYSTEM PROMPT", |
|
}, |
|
{ |
|
"from": "human", |
|
"value": "USER QUESTION" |
|
}, |
|
] |
|
|
|
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
|
|
outputs = model.generate(**inputs,do_sample=True,temperature=0.1,top_p=0.95,max_new_tokens=100) |
|
|
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
## Prompt template |
|
|
|
```text |
|
You are a helpful assistant with access to the following functions. Use them if required - |
|
{ |
|
"name": "function name", |
|
"description": "function description", |
|
"parameters": { |
|
"type": "type (object/number/string)", |
|
"properties": { |
|
"property_1": { |
|
"type": "type", |
|
"description": "property description" |
|
} |
|
}, |
|
"required": [ |
|
"property_1" |
|
] |
|
} |
|
} |
|
|
|
To use these functions respond with: |
|
<functioncall> {"name": "function_name", "arguments": {"arg_1": "value_1", "arg_1": "value_1", ...}} </functioncall> |
|
|
|
Edge cases you must handle: |
|
- If there are no functions that match the user request, you will respond politely that you cannot help. |
|
|
|
User Question: |
|
USER_QUESTION |
|
``` |
|
|
|
Function calls are enclosed in `<functioncall>` `</functioncall>`. |
|
|
|
The model was trained using the same delimiters as [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it): |
|
|
|
```text |
|
<bos><start_of_turn>user |
|
Write a hello world program<end_of_turn> |
|
<start_of_turn>model |
|
``` |
|
|
|
Use `<end_of_turn>` stop sequence to prevent the model from generating further text. |