|
--- |
|
license: apache-2.0 |
|
base_model: albert/albert-base-v2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: classify-clickbait |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# classify-clickbait |
|
|
|
This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0010 |
|
- Accuracy: 1.0 |
|
- F1: 1.0 |
|
- Precision: 1.0 |
|
- Recall: 1.0 |
|
- Accuracy Label Clickbait: 1.0 |
|
- Accuracy Label Factual: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Clickbait | Accuracy Label Factual | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------------------------:|:----------------------:| |
|
| 0.1089 | 1.1628 | 100 | 0.0617 | 0.9884 | 0.9884 | 0.9884 | 0.9884 | 0.9828 | 0.9941 | |
|
| 0.0118 | 2.3256 | 200 | 0.0093 | 0.9971 | 0.9971 | 0.9971 | 0.9971 | 0.9943 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|