Mistral_7B_MT / README.md
rishavranaut's picture
rishavranaut/Mistral_7B_MT
29827fc verified
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: Mistral_7B_MT
    results: []

Mistral_7B_MT

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8388
  • Accuracy: 0.8167
  • Precision: 0.8519
  • Recall: 0.7667
  • F1 score: 0.8070

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Accuracy F1 score Precision Recall Validation Loss
1.687 0.25 200 0.6233 0.4378 0.8627 0.2933 2.0030
0.9482 0.5 400 0.68 0.5616 0.8913 0.41 1.4557
0.9232 0.75 600 0.72 0.6471 0.875 0.5133 0.8805
0.7781 1.0 800 0.57 0.3246 0.7561 0.2067 1.4515
0.5468 1.25 1000 0.7233 0.6483 0.8895 0.51 0.8474
0.5549 1.5 1200 0.7767 0.7403 0.8843 0.6367 0.7168
0.4883 1.75 1400 0.8 0.7719 0.8982 0.6767 0.6943
0.4639 2.0 1600 0.7767 0.7276 0.9323 0.5967 0.7637
0.3804 2.25 1800 0.7617 0.7146 0.8905 0.5967 0.8467
0.3847 2.5 2000 0.81 0.7942 0.8661 0.7333 0.6699
0.346 2.75 2200 0.7833 0.7575 0.8602 0.6767 0.8569
0.3488 3.0 2400 0.7824 0.815 0.9238 0.6867 0.7878
0.2654 3.25 2600 1.0799 0.7683 0.9259 0.5833 0.7157
0.2506 3.5 2800 0.8567 0.8033 0.9062 0.6767 0.7748
0.2574 3.75 3000 0.7490 0.8083 0.7846 0.85 0.816
0.2137 4.0 3200 0.7665 0.8333 0.8546 0.8033 0.8282
0.1335 4.25 3400 0.8591 0.8133 0.8013 0.8333 0.8170
0.1486 4.5 3600 0.9781 0.83 0.9091 0.7333 0.8118
0.126 4.75 3800 0.8723 0.8217 0.8642 0.7633 0.8106
0.1474 5.0 4000 0.8388 0.8167 0.8519 0.7667 0.8070

Framework versions

  • PEFT 0.11.1
  • Transformers 4.44.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1