Llama2_7B_Task2_semantic_pred
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7577
- Accuracy: 0.8372
- Precision: 0.8372
- Recall: 0.8372
- F1 score: 0.8372
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 score |
---|---|---|---|---|---|---|---|
0.4971 | 0.5208 | 200 | 0.8286 | 0.6523 | 0.6523 | 0.6523 | 0.6523 |
0.3528 | 1.0417 | 400 | 0.5351 | 0.7930 | 0.7930 | 0.7930 | 0.7930 |
0.2258 | 1.5625 | 600 | 0.4218 | 0.8320 | 0.8320 | 0.8320 | 0.8320 |
0.2325 | 2.0833 | 800 | 0.5255 | 0.8190 | 0.8190 | 0.8190 | 0.8190 |
0.1686 | 2.6042 | 1000 | 0.4050 | 0.8581 | 0.8581 | 0.8581 | 0.8581 |
0.1188 | 3.125 | 1200 | 0.7833 | 0.8112 | 0.8112 | 0.8112 | 0.8112 |
0.0935 | 3.6458 | 1400 | 0.6355 | 0.8464 | 0.8464 | 0.8464 | 0.8464 |
0.0936 | 4.1667 | 1600 | 0.7110 | 0.8451 | 0.8451 | 0.8451 | 0.8451 |
0.0442 | 4.6875 | 1800 | 0.7577 | 0.8372 | 0.8372 | 0.8372 | 0.8372 |
Framework versions
- PEFT 0.11.1
- Transformers 4.44.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for rishavranaut/Llama2_7B_Task2_semantic_pred
Base model
meta-llama/Llama-2-7b-hf