results / README.md
rfhuang's picture
End of training
73dd8d7 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9132
  • Accuracy: 0.6351
  • F1: 0.6301
  • Precision: 0.6315
  • Recall: 0.6351

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.586 1.0 855 0.6272 0.6316 0.5289 0.5719 0.6316
0.6905 2.0 1710 0.5821 0.6520 0.5420 0.4804 0.6520
0.5642 3.0 2565 0.6012 0.6497 0.5396 0.4769 0.6497
0.6263 4.0 3420 0.6040 0.6526 0.5903 0.6403 0.6526
0.7556 5.0 4275 0.6088 0.6485 0.5406 0.4838 0.6485
0.4614 6.0 5130 0.6061 0.6614 0.6348 0.6523 0.6614
0.4232 7.0 5985 0.6184 0.6456 0.6401 0.6355 0.6456
0.519 8.0 6840 0.6186 0.6538 0.5449 0.4874 0.6538
0.4847 9.0 7695 0.6226 0.6421 0.5652 0.5948 0.6421
0.5505 10.0 8550 0.6857 0.6363 0.5903 0.6241 0.6363
0.5499 11.0 9405 0.6684 0.6491 0.6462 0.6470 0.6491
0.2869 12.0 10260 0.7500 0.6468 0.6341 0.6389 0.6468
0.2607 13.0 11115 0.9291 0.6351 0.6354 0.6357 0.6351
0.3495 14.0 11970 1.1298 0.6444 0.6415 0.6396 0.6444
0.2483 15.0 12825 1.3714 0.6246 0.6181 0.6320 0.6246
0.3764 16.0 13680 1.4325 0.6515 0.6454 0.6475 0.6515
0.373 17.0 14535 1.6233 0.6491 0.6473 0.6457 0.6491
0.0677 18.0 15390 1.7408 0.6450 0.6434 0.6429 0.6450
0.0665 19.0 16245 1.8868 0.6351 0.6296 0.6316 0.6351
0.0044 20.0 17100 1.9132 0.6351 0.6301 0.6315 0.6351

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1