Model Card for Model ID
https://huggingface.co/rezacsedu/financial_sentiment_analysis_gpt2_model
Model Details
Model Description
This a fine-tuned GPT2 model on the https://huggingface.co/datasets/FinGPT/fingpt-sentiment-train dataset for the downstream financial sentiment analysis.
- Developed by: Rezaul Karim, Ph.D.
- Model type: GPT2ForSequenceClassification (Fine-tuned GPT2)
- Language(s) (NLP): financial sentiment analysis
- License: MIT
- Finetuned from the model: https://huggingface.co/datasets/mteb/tweet_sentiment_extraction
Model Sources
- Repository: https://github.com/rezacsedu/financial_sentiment_analysis_LLM
- Paper [optional]: on the way
- Demo [optional]: on the way
Uses
The model is already fine-tuned for downstream financial sentiment analysis tasks.
import torch
# Load your fine-tuned model and tokenizer
model = AutoModelForSequenceClassification.from_pretrained("fine_tuned_finsetiment_model")
tokenizer = AutoTokenizer.from_pretrained("fine_tuned_finsetiment_model")
# Define the label mapping as provided
label_mapping_reverse = {
'0': 'Mildly positive',
'1': 'Mildly negative',
'2': 'Moderately negative',
'3': 'Moderately positive',
'4': 'Positive',
'5': 'Negative',
'6': 'Neutral',
'7': 'Strongly negative',
'8': 'Strongly positive'
}
def model_predict(text):
# Tokenize the input text
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
# Get predictions from the model
with torch.no_grad():
logits = model(**inputs).logits
# Convert to probabilities
probabilities = torch.nn.functional.softmax(logits, dim=-1)
# Create a list of tuples with label and probability
label_prob_pairs = [(label_mapping_reverse[label_idx], prob.item())
for label_idx, prob in enumerate(probabilities.squeeze())]
# Sort the list by probability in descending order
sorted_label_prob_pairs = sorted(label_prob_pairs, key=lambda pair: pair[1], reverse=True)
# Return the sorted list of label-probability pairs
return sorted_label_prob_pairs
# Example usage
text = "Intel Corporation (NASDAQ: INTC) has unveiled a remote verification platform called Project Amber"
predictions = model_predict(text)
for label, prob in predictions:
print(f"{label}: {prob:.3f}")
Training Details
Training Data
from transformers import GPT2Tokenizer
dataset = load_dataset("FinGPT/fingpt-sentiment-train")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
def tokenize_function(examples):
return tokenizer(examples["input"], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
from datasets import DatasetDict
import random
import string
def generate_random_id():
return ''.join(random.choices(string.ascii_lowercase + string.digits, k=10))
unique_outputs = set(dataset['train']['output'])
#label_mapping = {'mildly positive': 0, 'positive': 1, 'strong positive':2, 'moderately positive': 3, 'negative': 4, 'neutral': 5} # Add more mappings as needed
label_mapping = {label: index for index, label in enumerate(unique_outputs)}
def transform_dataset(dataset):
dataset = dataset.rename_column('input', 'text')
dataset = dataset.rename_column('output', 'label_text')
dataset = dataset.remove_columns(['instruction'])
dataset = dataset.add_column('id', [generate_random_id() for _ in range(dataset.num_rows)])
dataset = dataset.add_column('label', [label_mapping[label_text] for label_text in dataset['label_text']])
return dataset
transformed_dataset = DatasetDict({'train': transform_dataset(tokenized_datasets['train'])})
transformed_dataset['train'].set_format(type=None, columns=['id', 'text', 'label', 'label_text', 'input_ids', 'attention_mask'])
train_test_split = transformed_dataset['train'].train_test_split(test_size=0.3, seed=42)
tokenized_datasets['test'] = train_test_split['test']
tokenized_datasets['train'] = train_test_split['train']
small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(100))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(100))
Fine-tune Procedure
from transformers import GPT2ForSequenceClassification
from transformers import TrainingArguments, Trainer
model = GPT2ForSequenceClassification.from_pretrained("gpt2", num_labels=9)
training_args = TrainingArguments(
output_dir="test_trainer",
#evaluation_strategy="epoch",
per_device_train_batch_size=1, # Reduce batch size here
per_device_eval_batch_size=1, # Optionally, reduce for evaluation as well
gradient_accumulation_steps=4
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=small_train_dataset,
eval_dataset=small_eval_dataset,
compute_metrics=compute_metrics,
)
trainer.train()
trainer.evaluate()
trainer.save_model("fine_tuned_finsetiment_model")
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
Evaluation
import evaluate
metric = evaluate.load("accuracy")
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
Summary
Citation [optional]
BibTeX:
Model Card Contact
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.