Phi-Bode / README.md
leaderboard-pt-pr-bot's picture
Fixing some errors of the leaderboard evaluation results in the ModelCard yaml
ba0946a verified
|
raw
history blame
10.5 kB
metadata
language:
  - pt
  - en
license: mit
library_name: peft
tags:
  - Phi-2B
  - Portuguese
  - Bode
  - LLM
  - Alpaca
metrics:
  - accuracy
  - f1
  - precision
  - recall
pipeline_tag: text-generation
model-index:
  - name: Phi-Bode
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: ENEM Challenge (No Images)
          type: eduagarcia/enem_challenge
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 33.94
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/Phi-Bode
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BLUEX (No Images)
          type: eduagarcia-temp/BLUEX_without_images
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 25.31
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/Phi-Bode
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: OAB Exams
          type: eduagarcia/oab_exams
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 28.56
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/Phi-Bode
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 RTE
          type: assin2
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 68.1
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/Phi-Bode
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 STS
          type: eduagarcia/portuguese_benchmark
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: pearson
            value: 30.57
            name: pearson
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/Phi-Bode
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: FaQuAD NLI
          type: ruanchaves/faquad-nli
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 43.97
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/Phi-Bode
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HateBR Binary
          type: ruanchaves/hatebr
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 60.51
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/Phi-Bode
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: PT Hate Speech Binary
          type: hate_speech_portuguese
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 54.6
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/Phi-Bode
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: tweetSentBR
          type: eduagarcia-temp/tweetsentbr
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 46.78
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/Phi-Bode
          name: Open Portuguese LLM Leaderboard

Phi-Bode

Phi-Bode Logo

Phi-Bode é um modelo de linguagem ajustado para o idioma português, desenvolvido a partir do modelo base Phi-2B fornecido pela Microsoft. Este modelo foi refinado através do processo de fine-tuning utilizando o dataset Alpaca traduzido para o português. O principal objetivo deste modelo é ser viável para pessoas que não possuem recursos computacionais disponíveis para o uso de LLMs (Large Language Models). Ressalta-se que este é um trabalho em andamento e o modelo ainda apresenta problemas na geração de texto em português.

Características Principais

  • Modelo Base: Phi-2B, criado pela Microsoft, com 2.7 bilhões de parâmetros.
  • Dataset para Fine-tuning: Uso do dataset Alpaca traduzido para português para adaptar o modelo às nuances da língua portuguesa.
  • Quantização: O modelo base Phi-2B foi quantizado em 4 bits para reduzir o tamanho e a complexidade computacional.
  • Treinamento: O treinamento foi realizado utilizando o método LoRa, visando eficiência computacional e otimização de recursos.
  • Merge de Modelos: Após o treinamento, o modelo treinado quantizado em 4 bits foi mesclado com o modelo base para preservar a qualidade do modelo.

Outros modelos disponíveis

Utilização

O modelo Phi-Bode pode ser utilizado para uma variedade de tarefas de processamento de linguagem natural (PLN) em português, como geração de texto, classificação, sumarização de texto, entre outros.

Exemplo de uso

Abaixo, colocamos um exemplo simples de como carregar o modelo e gerar texto:

!pip3 -q install -q -U bitsandbytes==0.42.0
!pip3 -q install -q -U accelerate==0.27.1
!pip3 -q install -q -U transformers==4.38.0

from transformers import AutoModelForCausalLM, AutoTokenizer

hf_auth = 'HF_ACCESS_KEY'

model_id = "recogna-nlp/Phi-Bode"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map={"":0}, trust_remote_code=True, token=hf_auth)
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token=hf_auth)

def get_completion(model, tokenizer, query : str, input : str = '', device = 'cuda:0', max_new_tokens=128) -> str:
    if len(input) == 0:
      prompt_template = """Abaixo está uma instrução que descreve uma tarefa. Escreva uma resposta que complete adequadamente o pedido.
      ### Instrução: {query}
      ### Resposta:"""
      prompt = prompt_template.format(query=query)
    else:
      prompt_template = """Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido.
      ### Instrução: {query}
      ### Entrada: {input}
      ### Resposta:"""
      prompt = prompt_template.format(query=query, input=input)
    encodeds = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
    model_inputs = encodeds.to(device)
    generated_ids = model.generate(**model_inputs,
                                   max_new_tokens=max_new_tokens,
                                   do_sample=True,
                                   pad_token_id=tokenizer.eos_token_id)
    decoded = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
    return (decoded[len(prompt):])

result = get_completion(model=model, tokenizer=tokenizer, query="Qual é a capital da França?")
print(result)
#Exemplo de resposta obtida: A capital da França é Paris. A cidade tem uma estratégia de transporte moderno difícil entre todos os lugares, incluindo ferroviário, busca, metro e línguações. Para obter uma avaliação completa da cidade, visita esta aumentar a experiência gastronômica, cultural e natural.

Contribuições

Contribuições para a melhoria deste modelo são bem-vindas. Sinta-se à vontade para abrir problemas e solicitações pull.

Citação

Se você deseja utilizar o Phi-Bode em sua pesquisa, cite-o da seguinte maneira:

@misc {phibode_2024,
    author       = { Pedro Henrique Paiola and Gabriel Lino Garcia and João Paulo Papa},
    title        = { Phi-Bode},
    year         = {2024},
    url          = { https://huggingface.co/recogna-nlp/Phi-Bode },
    doi          = { 10.57967/hf/1880 },
    publisher    = { Hugging Face }
}

Open Portuguese LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Average 43.59
ENEM Challenge (No Images) 33.94
BLUEX (No Images) 25.31
OAB Exams 28.56
Assin2 RTE 68.10
Assin2 STS 30.57
FaQuAD NLI 43.97
HateBR Binary 60.51
PT Hate Speech Binary 54.60
tweetSentBR 46.78