qunfengd's picture
Upload tokenizer
e637a12 verified
metadata
license: mit
tags:
  - generated_from_keras_callback
base_model: facebook/esm2_t12_35M_UR50D
model-index:
  - name: >-
      esm2_t12_35M_UR50D-finetuned-AMP_Classification_AntiGramPositive_doublePositiveCase
    results: []

esm2_t12_35M_UR50D-finetuned-AMP_Classification_AntiGramPositive_doublePositiveCase

This model is a fine-tuned version of facebook/esm2_t12_35M_UR50D on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0617
  • Train Accuracy: 0.9772
  • Validation Loss: 0.5210
  • Validation Accuracy: 0.8551
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.0}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.4862 0.7800 0.4257 0.8218 0
0.3768 0.8474 0.3845 0.8478 1
0.2799 0.8950 0.3625 0.8643 2
0.2042 0.9241 0.3613 0.8617 3
0.1502 0.9427 0.3833 0.8745 4
0.1228 0.9545 0.3959 0.8719 5
0.0935 0.9650 0.4453 0.8682 6
0.0786 0.9692 0.4728 0.8711 7
0.0682 0.9750 0.4915 0.8727 8
0.0617 0.9772 0.5210 0.8551 9

Framework versions

  • Transformers 4.40.2
  • TensorFlow 2.15.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1