Edit model card

Instance Segmentation Example

Content:

PyTorch Version with Trainer

This model is based on the script run_instance_segmentation.py. The script uses the 🤗 Trainer API to manage training automatically, including distributed environments. Here, we fine-tune a Mask2Former model on a subsample of the ADE20K dataset. We created a small dataset with approximately 2,000 images containing only "person" and "car" annotations; all other pixels are marked as "background."

Here is the label2id mapping for this model:

label2id = {
    "person": 0,
    "car": 1,
}

The training was done with the following command:

python run_instance_segmentation.py \
    --model_name_or_path facebook/mask2former-swin-tiny-coco-instance \
    --output_dir finetune-instance-segmentation-ade20k-mini-mask2former \
    --dataset_name qubvel-hf/ade20k-mini \
    --do_reduce_labels \
    --image_height 256 \
    --image_width 256 \
    --do_train \
    --fp16 \
    --num_train_epochs 40 \
    --learning_rate 1e-5 \
    --lr_scheduler_type constant \
    --per_device_train_batch_size 8 \
    --gradient_accumulation_steps 2 \
    --dataloader_num_workers 8 \
    --dataloader_persistent_workers \
    --dataloader_prefetch_factor 4 \
    --do_eval \
    --evaluation_strategy epoch \
    --logging_strategy epoch \
    --save_strategy epoch \
    --save_total_limit 2 \
    --push_to_hub

Reload and Perform Inference

You can easily load this trained model and perform inference as follows:

import torch
import requests
import matplotlib.pyplot as plt

from PIL import Image
from transformers import Mask2FormerForUniversalSegmentation, Mask2FormerImageProcessor

# Load image
image = Image.open(requests.get("http://farm4.staticflickr.com/3017/3071497290_31f0393363_z.jpg", stream=True).raw)

# Load model and image processor
device = "cuda"
checkpoint = "qubvel-hf/finetune-instance-segmentation-ade20k-mini-mask2former"

model = Mask2FormerForUniversalSegmentation.from_pretrained(checkpoint, device_map=device)
image_processor = Mask2FormerImageProcessor.from_pretrained(checkpoint)

# Run inference on image
inputs = image_processor(images=[image], return_tensors="pt").to(device)
with torch.no_grad():
    outputs = model(**inputs)

# Post-process outputs
outputs = image_processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])

print("Mask shape: ", outputs[0]["segmentation"].shape)
print("Mask values: ", outputs[0]["segmentation"].unique())
for segment in outputs[0]["segments_info"]:
    print("Segment: ", segment)
Mask shape:  torch.Size([427, 640])
Mask values:  tensor([-1.,  0.,  1.,  2.,  3.,  4.,  5.,  6.])
Segment:  {'id': 0, 'label_id': 0, 'was_fused': False, 'score': 0.946127}
Segment:  {'id': 1, 'label_id': 1, 'was_fused': False, 'score': 0.961582}
Segment:  {'id': 2, 'label_id': 1, 'was_fused': False, 'score': 0.968367}
Segment:  {'id': 3, 'label_id': 1, 'was_fused': False, 'score': 0.819527}
Segment:  {'id': 4, 'label_id': 1, 'was_fused': False, 'score': 0.655761}
Segment:  {'id': 5, 'label_id': 1, 'was_fused': False, 'score': 0.531299}
Segment:  {'id': 6, 'label_id': 1, 'was_fused': False, 'score': 0.929477}

Use the following code to visualize the results:

import numpy as np
import matplotlib.pyplot as plt

segmentation = outputs[0]["segmentation"].numpy()

plt.figure(figsize=(10, 10))
plt.subplot(1, 2, 1)
plt.imshow(np.array(image))
plt.axis("off")
plt.subplot(1, 2, 2)
plt.imshow(segmentation)
plt.axis("off")
plt.show()

Result

Downloads last month
3,075
Safetensors
Model size
47.4M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.