Edit model card

Segment-Anything-Model: Optimized for Mobile Deployment

High-quality segmentation mask generation around any object in an image with simple input prompt

Transformer based encoder-decoder where prompts specify what to segment in an image thereby allowing segmentation without the need for additional training. The image encoder generates embeddings and the lightweight decoder operates on the embeddings for point and mask based image segmentation.

This model is an implementation of Segment-Anything-Model found here.

This repository provides scripts to run Segment-Anything-Model on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Semantic segmentation
  • Model Stats:
    • Model checkpoint: vit_l
    • Input resolution: 720p (720x1280)
    • Number of parameters (SAMDecoder): 5.11M
    • Model size (SAMDecoder): 19.6 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
SAMDecoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 29.177 ms 4 - 12 MB FP16 NPU Segment-Anything-Model.tflite
SAMDecoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 20.232 ms 3 - 230 MB FP16 NPU Segment-Anything-Model.tflite
SAMDecoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 16.874 ms 2 - 163 MB FP16 NPU Segment-Anything-Model.tflite
SAMDecoder QCS8550 (Proxy) QCS8550 Proxy TFLITE 29.037 ms 4 - 12 MB FP16 NPU Segment-Anything-Model.tflite
SAMDecoder SA8255 (Proxy) SA8255P Proxy TFLITE 28.98 ms 4 - 12 MB FP16 NPU Segment-Anything-Model.tflite
SAMDecoder SA8775 (Proxy) SA8775P Proxy TFLITE 29.066 ms 4 - 6 MB FP16 NPU Segment-Anything-Model.tflite
SAMDecoder SA8650 (Proxy) SA8650P Proxy TFLITE 29.012 ms 4 - 12 MB FP16 NPU Segment-Anything-Model.tflite
SAMDecoder SA8295P ADP SA8295P TFLITE 36.365 ms 0 - 153 MB FP16 NPU Segment-Anything-Model.tflite
SAMDecoder QCS8450 (Proxy) QCS8450 Proxy TFLITE 32.973 ms 4 - 220 MB FP16 NPU Segment-Anything-Model.tflite
SAMEncoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 10578.004 ms 124 - 127 MB FP32 CPU Segment-Anything-Model.tflite
SAMEncoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 9199.727 ms 121 - 1628 MB FP32 CPU Segment-Anything-Model.tflite
SAMEncoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 6686.187 ms 122 - 1592 MB FP32 CPU Segment-Anything-Model.tflite
SAMEncoder QCS8550 (Proxy) QCS8550 Proxy TFLITE 10519.059 ms 123 - 127 MB FP32 CPU Segment-Anything-Model.tflite
SAMEncoder SA8255 (Proxy) SA8255P Proxy TFLITE 10234.058 ms 123 - 126 MB FP32 CPU Segment-Anything-Model.tflite
SAMEncoder SA8775 (Proxy) SA8775P Proxy TFLITE 10476.142 ms 123 - 126 MB FP32 CPU Segment-Anything-Model.tflite
SAMEncoder SA8650 (Proxy) SA8650P Proxy TFLITE 11261.132 ms 124 - 286 MB FP32 CPU Segment-Anything-Model.tflite
SAMEncoder SA8295P ADP SA8295P TFLITE 10774.664 ms 124 - 1647 MB FP32 CPU Segment-Anything-Model.tflite
SAMEncoder QCS8450 (Proxy) QCS8450 Proxy TFLITE 14281.656 ms 127 - 1691 MB FP32 CPU Segment-Anything-Model.tflite

Installation

This model can be installed as a Python package via pip.

pip install "qai-hub-models[sam]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.sam.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.sam.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.sam.export
Profiling Results
------------------------------------------------------------
SAMDecoder
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 29.2                   
Estimated peak memory usage (MB): [4, 12]                
Total # Ops                     : 337                    
Compute Unit(s)                 : NPU (337 ops)          

------------------------------------------------------------
SAMEncoder
Device                          : Samsung Galaxy S23 (13)   
Runtime                         : TFLITE                    
Estimated inference time (ms)   : 10578.0                   
Estimated peak memory usage (MB): [124, 127]                
Total # Ops                     : 818                       
Compute Unit(s)                 : GPU (36 ops) CPU (782 ops)

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.sam import SAMDecoder,SAMEncoder

# Load the model
get_sam_decoder()_model = SAMDecoder.from_pretrained()
get_sam_encoder()_model = SAMEncoder.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S23")

# Trace model
get_sam_decoder()_input_shape = get_sam_decoder()_model.get_input_spec()
get_sam_decoder()_sample_inputs = get_sam_decoder()_model.sample_inputs()

traced_get_sam_decoder()_model = torch.jit.trace(get_sam_decoder()_model, [torch.tensor(data[0]) for _, data in get_sam_decoder()_sample_inputs.items()])

# Compile model on a specific device
get_sam_decoder()_compile_job = hub.submit_compile_job(
    model=traced_get_sam_decoder()_model ,
    device=device,
    input_specs=get_sam_decoder()_model.get_input_spec(),
)

# Get target model to run on-device
get_sam_decoder()_target_model = get_sam_decoder()_compile_job.get_target_model()
# Trace model
get_sam_encoder()_input_shape = get_sam_encoder()_model.get_input_spec()
get_sam_encoder()_sample_inputs = get_sam_encoder()_model.sample_inputs()

traced_get_sam_encoder()_model = torch.jit.trace(get_sam_encoder()_model, [torch.tensor(data[0]) for _, data in get_sam_encoder()_sample_inputs.items()])

# Compile model on a specific device
get_sam_encoder()_compile_job = hub.submit_compile_job(
    model=traced_get_sam_encoder()_model ,
    device=device,
    input_specs=get_sam_encoder()_model.get_input_spec(),
)

# Get target model to run on-device
get_sam_encoder()_target_model = get_sam_encoder()_compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

get_sam_decoder()_profile_job = hub.submit_profile_job(
    model=get_sam_decoder()_target_model,
    device=device,
)
get_sam_encoder()_profile_job = hub.submit_profile_job(
    model=get_sam_encoder()_target_model,
    device=device,
)

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

get_sam_decoder()_input_data = get_sam_decoder()_model.sample_inputs()
get_sam_decoder()_inference_job = hub.submit_inference_job(
    model=get_sam_decoder()_target_model,
    device=device,
    inputs=get_sam_decoder()_input_data,
)
get_sam_decoder()_inference_job.download_output_data()
get_sam_encoder()_input_data = get_sam_encoder()_model.sample_inputs()
get_sam_encoder()_inference_job = hub.submit_inference_job(
    model=get_sam_encoder()_target_model,
    device=device,
    inputs=get_sam_encoder()_input_data,
)
get_sam_encoder()_inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.sam.demo --on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.sam.demo -- --on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on Segment-Anything-Model's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of Segment-Anything-Model can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Inference API (serverless) does not yet support pytorch models for this pipeline type.