Edit model card

nanoLLaVA - Sub 1B Vision-Language Model

IMPORTANT: nanoLLaVA-1.5 is out with a much better performance. Please find it here.

Logo

Description

nanoLLaVA is a "small but mighty" 1B vision-language model designed to run efficiently on edge devices.

Model VQA v2 TextVQA ScienceQA POPE MMMU (Test) MMMU (Eval) GQA MM-VET
Score 70.84 46.71 58.97 84.1 28.6 30.4 54.79 23.9

Training Data

Training Data will be released later as I am still writing a paper on this. Expect the final final to be much more powerful than the current one.

Finetuning Code

Coming Soon!!!

Usage

You can use with transformers with the following script:

pip install -U transformers accelerate flash_attn
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings

# disable some warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')

# set device
torch.set_default_device('cuda')  # or 'cpu'

# create model
model = AutoModelForCausalLM.from_pretrained(
    'qnguyen3/nanoLLaVA',
    torch_dtype=torch.float16,
    device_map='auto',
    trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
    'qnguyen3/nanoLLaVA',
    trust_remote_code=True)

# text prompt
prompt = 'Describe this image in detail'

messages = [
    {"role": "user", "content": f'<image>\n{prompt}'}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

print(text)

text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)

# image, sample images can be found in images folder
image = Image.open('/path/to/image.png')
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)

# generate
output_ids = model.generate(
    input_ids,
    images=image_tensor,
    max_new_tokens=2048,
    use_cache=True)[0]

print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())

Prompt Format

The model follow the ChatML standard, however, without \n at the end of <|im_end|>:

<|im_start|>system
Answer the question<|im_end|><|im_start|>user
<image>
What is the picture about?<|im_end|><|im_start|>assistant

Image Example
small What is the text saying?
"Small but mighty".
How does the text correlate to the context of the image?
The text seems to be a playful or humorous representation of a small but mighty figure, possibly a mouse or a mouse toy, holding a weightlifting bar.

Model is trained using a modified version from Bunny

Downloads last month
19,103
Safetensors
Model size
1.05B params
Tensor type
BF16
ยท
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for qnguyen3/nanoLLaVA

Finetunes
4 models
Quantizations
2 models

Space using qnguyen3/nanoLLaVA 1

Collection including qnguyen3/nanoLLaVA