Edit model card

multilabel_lora_distilbert_classifier_tuned_ru

This model is a fine-tuned version of distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3658
  • Accuracy: 0.7845
  • F1: 0.7857
  • Precision: 0.7997
  • Recall: 0.7845

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.993596574084884e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.0622 1.0 727 0.9090 0.6025 0.5923 0.6149 0.6025
0.9449 2.0 1454 0.7451 0.6891 0.6855 0.6950 0.6891
0.7018 3.0 2181 0.6176 0.7359 0.7354 0.7377 0.7359
0.6192 4.0 2908 0.5854 0.7758 0.7751 0.7805 0.7758
0.4921 5.0 3635 0.5727 0.8061 0.8050 0.8202 0.8061
0.4091 6.0 4362 0.5019 0.8294 0.8293 0.8301 0.8294
0.3273 7.0 5089 0.4864 0.8404 0.8403 0.8409 0.8404
0.3473 8.0 5816 0.4828 0.8514 0.8512 0.8557 0.8514
0.2821 9.0 6543 0.4679 0.8597 0.8597 0.8597 0.8597
0.2599 10.0 7270 0.4874 0.8803 0.8799 0.8823 0.8803
0.2717 11.0 7997 0.4551 0.8831 0.8829 0.8832 0.8831
0.2211 12.0 8724 0.4602 0.8858 0.8856 0.8859 0.8858
0.2207 13.0 9451 0.5086 0.8845 0.8837 0.8862 0.8845
0.2166 14.0 10178 0.4795 0.8941 0.8936 0.8952 0.8941
0.1782 15.0 10905 0.4650 0.8955 0.8951 0.8959 0.8955

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for pyteach237/multilabel_lora_distilbert_classifier_tuned_ru

Adapter
(2)
this model