Llama-3-6.3b-v0.1
This is a layer pruning experiment based off of the original llama-3-8b:
- 8 layers pruned with PruneMe/MergeKit
- layers selected using BEE-spoke-data/fineweb-100k_en-med
- brief subsequent continued pretraining @ ctx 4096
- data: 10k rows of FineWeb (different than pruning data) + some curated data
- wandb here
quick eval
hf (pretrained=pszemraj/Llama-3-6.3b-v0.1,trust_remote_code=True,dtype=bfloat16), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 1
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
arc_easy | 1 | none | 0 | acc | 0.7109 | ± | 0.0093 |
none | 0 | acc_norm | 0.6843 | ± | 0.0095 | ||
boolq | 2 | none | 0 | acc | 0.7920 | ± | 0.0071 |
lambada_openai | 1 | none | 0 | perplexity | 4.5411 | ± | 0.1073 |
none | 0 | acc | 0.6734 | ± | 0.0065 | ||
openbookqa | 1 | none | 0 | acc | 0.3000 | ± | 0.0205 |
none | 0 | acc_norm | 0.4140 | ± | 0.0220 | ||
piqa | 1 | none | 0 | acc | 0.7443 | ± | 0.0102 |
none | 0 | acc_norm | 0.7530 | ± | 0.0101 | ||
winogrande | 1 | none | 0 | acc | 0.7127 | ± | 0.0127 |
Details
See axolotl config
axolotl version: 0.4.0
base_model: pszemraj/llama-3-prune_8
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
strict: false
seed: 80085
# dataset
datasets:
- path: BEE-spoke-data/KI-smorgasbord_fw-small
type: completion # format from earlier
field: text # Optional[str] default: text, field to use for completion data
val_set_size: 0.015
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: false
train_on_inputs: false
group_by_length: false
# WANDB
wandb_project: llama3-pruning
wandb_entity: pszemraj
wandb_watch: gradients
wandb_name: Llama-3-6.3b-v0.1
hub_model_id: pszemraj/Llama-3-6.3b-v0.1
hub_strategy: every_save
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch_fused # paged_adamw_32bit
weight_decay: 0.05
lr_scheduler: cosine
learning_rate: 4e-5
warmup_ratio: 0.1
load_in_8bit: false
load_in_4bit: false
bfloat16: true
tf32: true
flash_attention: true
torch_compile: true # requires >= torch 2.0, may sometimes cause problems
torch_compile_backend: inductor # Optional[str]
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
# hyperparams for freq of evals, saving, etc
evals_per_epoch: 5
saves_per_epoch: 3
save_safetensors: true
save_total_limit: 1
output_dir: ./output-axolotl/output-model-6.3b
logging_steps: 8
deepspeed:
special_tokens:
pad_token: <|end_of_text|>
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0006 | 1 | 7.8100 |
2.2782 | 0.2002 | 320 | 2.3728 |
2.2699 | 0.4004 | 640 | 2.3265 |
2.3761 | 0.6006 | 960 | 2.2849 |
2.2448 | 0.8008 | 1280 | 2.2702 |
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 10.28 |
IFEval (0-Shot) | 10.44 |
BBH (3-Shot) | 18.68 |
MATH Lvl 5 (4-Shot) | 1.51 |
GPQA (0-shot) | 4.47 |
MuSR (0-shot) | 6.15 |
MMLU-PRO (5-shot) | 20.44 |
- Downloads last month
- 17
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for pszemraj/Llama-3-6.3b-v0.1
Base model
meta-llama/Meta-Llama-3-8BEvaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard10.440
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard18.680
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard1.510
- acc_norm on GPQA (0-shot)Open LLM Leaderboard4.470
- acc_norm on MuSR (0-shot)Open LLM Leaderboard6.150
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard20.440