|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from paddlenlp.utils.log import logger |
|
logger.set_level("WARNING") |
|
import paddle |
|
import argparse |
|
import contextlib |
|
import gc |
|
import hashlib |
|
import math |
|
import os |
|
import sys |
|
import warnings |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import numpy as np |
|
import paddle |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
import requests |
|
from huggingface_hub import HfFolder, create_repo, upload_folder, whoami |
|
from paddle.distributed.fleet.utils.hybrid_parallel_util import ( |
|
fused_allreduce_gradients, |
|
) |
|
from utils import context_nologging, _retry |
|
from paddle.io import BatchSampler, DataLoader, Dataset, DistributedBatchSampler |
|
from paddle.optimizer import AdamW |
|
from paddle.vision import BaseTransform, transforms |
|
from PIL import Image |
|
from tqdm.auto import tqdm |
|
|
|
from paddlenlp.trainer import set_seed |
|
from paddlenlp.transformers import AutoTokenizer, PretrainedConfig |
|
from ppdiffusers import ( |
|
AutoencoderKL, |
|
DDPMScheduler, |
|
DiffusionPipeline, |
|
DPMSolverMultistepScheduler, |
|
UNet2DConditionModel, |
|
) |
|
from ppdiffusers.loaders import AttnProcsLayers |
|
from ppdiffusers.modeling_utils import freeze_params, unwrap_model |
|
from ppdiffusers.models.cross_attention import LoRACrossAttnProcessor |
|
from ppdiffusers.optimization import get_scheduler |
|
from ppdiffusers.utils import image_grid |
|
|
|
def str2bool(v): |
|
if v.lower() in ("yes", "true", "t", "y", "1"): |
|
return True |
|
elif v.lower() in ("no", "false", "f", "n", "0"): |
|
return False |
|
else: |
|
raise argparse.ArgumentTypeError("Unsupported value encountered.") |
|
|
|
def url_or_path_join(*path_list): |
|
return os.path.join(*path_list) if os.path.isdir(os.path.join(*path_list)) else "/".join(path_list) |
|
|
|
|
|
def save_model_card(repo_name, images=None, base_model=str, prompt=str, repo_folder=None): |
|
img_str = "" |
|
for i, image in enumerate(images): |
|
image.save(os.path.join(repo_folder, f"image_{i}.png")) |
|
img_str += f"![img_{i}](./image_{i}.png)\n" |
|
|
|
yaml = f""" |
|
--- |
|
license: creativeml-openrail-m |
|
base_model: {base_model} |
|
instance_prompt: {prompt} |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-ppdiffusers |
|
- text-to-image |
|
- ppdiffusers |
|
- lora |
|
inference: false |
|
--- |
|
""" |
|
model_card = f""" |
|
# LoRA DreamBooth - {repo_name} |
|
These are LoRA adaption weights for {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. \n |
|
{img_str} |
|
""" |
|
with open(os.path.join(repo_folder, "README.md"), "w") as f: |
|
f.write(yaml + model_card) |
|
|
|
|
|
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str): |
|
try: |
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
url_or_path_join(pretrained_model_name_or_path, "text_encoder") |
|
) |
|
model_class = text_encoder_config.architectures[0] |
|
except Exception: |
|
model_class = "LDMBertModel" |
|
if model_class == "CLIPTextModel": |
|
from paddlenlp.transformers import CLIPTextModel |
|
|
|
return CLIPTextModel |
|
elif model_class == "RobertaSeriesModelWithTransformation": |
|
from ppdiffusers.pipelines.alt_diffusion.modeling_roberta_series import ( |
|
RobertaSeriesModelWithTransformation, |
|
) |
|
|
|
return RobertaSeriesModelWithTransformation |
|
elif model_class == "BertModel": |
|
from paddlenlp.transformers import BertModel |
|
|
|
return BertModel |
|
elif model_class == "LDMBertModel": |
|
from ppdiffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import ( |
|
LDMBertModel, |
|
) |
|
|
|
return LDMBertModel |
|
else: |
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
class Lambda(BaseTransform): |
|
def __init__(self, fn, keys=None): |
|
super().__init__(keys) |
|
self.fn = fn |
|
|
|
def _apply_image(self, img): |
|
return self.fn(img) |
|
|
|
|
|
def get_report_to(args): |
|
if args.report_to == "visualdl": |
|
from visualdl import LogWriter |
|
|
|
writer = LogWriter(logdir=args.logging_dir) |
|
elif args.report_to == "tensorboard": |
|
from tensorboardX import SummaryWriter |
|
|
|
writer = SummaryWriter(logdir=args.logging_dir) |
|
else: |
|
raise ValueError("report_to must be in ['visualdl', 'tensorboard']") |
|
return writer |
|
|
|
|
|
def parse_args(input_args=None): |
|
parser = argparse.ArgumentParser(description="Simple example of a training dreambooth lora script.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
type=str, |
|
default=None, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--instance_data_dir", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="A folder containing the training data of instance images.", |
|
) |
|
parser.add_argument( |
|
"--class_data_dir", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="A folder containing the training data of class images.", |
|
) |
|
parser.add_argument( |
|
"--instance_prompt", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="The prompt with identifier specifying the instance", |
|
) |
|
parser.add_argument( |
|
"--class_prompt", |
|
type=str, |
|
default=None, |
|
help="The prompt to specify images in the same class as provided instance images.", |
|
) |
|
parser.add_argument( |
|
"--validation_prompt", type=str, default=None, help="A prompt that is sampled during training for inference." |
|
) |
|
parser.add_argument( |
|
"--num_validation_images", |
|
type=int, |
|
default=4, |
|
help="Number of images that should be generated during validation with `validation_prompt`.", |
|
) |
|
parser.add_argument( |
|
"--validation_steps", |
|
type=int, |
|
default=50, |
|
help=( |
|
"Run dreambooth validation every X global steps. Dreambooth validation consists of running the prompt" |
|
" `args.validation_prompt` multiple times: `args.num_validation_images`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--with_prior_preservation", |
|
default=False, |
|
action="store_true", |
|
help="Flag to add prior preservation loss.", |
|
) |
|
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") |
|
parser.add_argument( |
|
"--num_class_images", |
|
type=int, |
|
default=100, |
|
help=( |
|
"Minimal class images for prior preservation loss. If there are not enough images already present in" |
|
" class_data_dir, additional images will be sampled with class_prompt." |
|
), |
|
) |
|
parser.add_argument( |
|
"--lora_rank", |
|
type=int, |
|
default=4, |
|
help=( |
|
"lora_rank" |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="lora-dreambooth-model", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--height", |
|
type=int, |
|
default=None, |
|
help=( |
|
"The height for input images, all the images in the train/validation dataset will be resized to this" |
|
" height" |
|
), |
|
) |
|
parser.add_argument( |
|
"--width", |
|
type=int, |
|
default=None, |
|
help=( |
|
"The width for input images, all the images in the train/validation dataset will be resized to this" |
|
" width" |
|
), |
|
) |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--center_crop", |
|
default=False, |
|
action="store_true", |
|
help=( |
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" |
|
" cropped. The images will be resized to the resolution first before cropping." |
|
), |
|
) |
|
parser.add_argument( |
|
"--random_flip", |
|
action="store_true", |
|
help="whether to randomly flip images horizontally", |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument( |
|
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=500, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=100, |
|
help=("Save a checkpoint of the training state every X updates."), |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=5e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--lr_num_cycles", |
|
type=int, |
|
default=1, |
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", |
|
) |
|
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", type=str2bool, nargs="?", const=False, help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) or [VisualDL](https://www.paddlepaddle.org.cn/paddle/visualdl) log directory. Will default to" |
|
"*output_dir/logs" |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="visualdl", |
|
choices=["tensorboard", "visualdl"], |
|
help="Log writer type.", |
|
) |
|
if input_args is not None: |
|
args = parser.parse_args(input_args) |
|
else: |
|
args = parser.parse_args() |
|
|
|
if args.instance_data_dir is None: |
|
raise ValueError("You must specify a train data directory.") |
|
|
|
if args.with_prior_preservation: |
|
if args.class_data_dir is None: |
|
raise ValueError("You must specify a data directory for class images.") |
|
if args.class_prompt is None: |
|
raise ValueError("You must specify prompt for class images.") |
|
else: |
|
|
|
if args.class_data_dir is not None: |
|
warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") |
|
if args.class_prompt is not None: |
|
warnings.warn("You need not use --class_prompt without --with_prior_preservation.") |
|
|
|
args.logging_dir = os.path.join(args.output_dir, args.logging_dir) |
|
if args.height is None or args.width is None and args.resolution is not None: |
|
args.height = args.width = args.resolution |
|
|
|
return args |
|
|
|
|
|
class DreamBoothDataset(Dataset): |
|
""" |
|
A dataset to prepare the instance and class images with the prompts for fine-tuning the model. |
|
It pre-processes the images and the tokenizes prompts. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
instance_data_root, |
|
instance_prompt, |
|
tokenizer, |
|
class_data_root=None, |
|
class_prompt=None, |
|
height=512, |
|
width=512, |
|
center_crop=False, |
|
interpolation="bilinear", |
|
random_flip=False, |
|
): |
|
self.height = height |
|
self.width = width |
|
self.center_crop = center_crop |
|
self.tokenizer = tokenizer |
|
|
|
self.instance_data_root = Path(instance_data_root) |
|
if not self.instance_data_root.exists(): |
|
raise ValueError("Instance images root doesn't exists.") |
|
ext = ["png", "jpg", "jpeg", "bmp", "PNG", "JPG", "JPEG", "BMP"] |
|
self.instance_images_path = [] |
|
for p in Path(instance_data_root).iterdir(): |
|
if any(suffix in p.name for suffix in ext): |
|
self.instance_images_path.append(p) |
|
self.num_instance_images = len(self.instance_images_path) |
|
self.instance_prompt = instance_prompt |
|
self._length = self.num_instance_images |
|
|
|
if class_data_root is not None: |
|
self.class_data_root = Path(class_data_root) |
|
self.class_data_root.mkdir(parents=True, exist_ok=True) |
|
self.class_images_path = [] |
|
for p in Path(class_data_root).iterdir(): |
|
if any(suffix in p.name for suffix in ext): |
|
self.class_images_path.append(p) |
|
self.num_class_images = len(self.class_images_path) |
|
self._length = max(self.num_class_images, self.num_instance_images) |
|
self.class_prompt = class_prompt |
|
else: |
|
self.class_data_root = None |
|
|
|
self.image_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize((height, width), interpolation=interpolation), |
|
transforms.CenterCrop((height, width)) if center_crop else transforms.RandomCrop((height, width)), |
|
transforms.RandomHorizontalFlip() if random_flip else Lambda(lambda x: x), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
def __len__(self): |
|
return self._length |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) |
|
if not instance_image.mode == "RGB": |
|
instance_image = instance_image.convert("RGB") |
|
example["instance_images"] = self.image_transforms(instance_image) |
|
example["instance_prompt_ids"] = self.tokenizer( |
|
self.instance_prompt, |
|
padding="do_not_pad", |
|
truncation=True, |
|
max_length=self.tokenizer.model_max_length, |
|
return_attention_mask=False, |
|
).input_ids |
|
|
|
if self.class_data_root: |
|
class_image = Image.open(self.class_images_path[index % self.num_class_images]) |
|
if not class_image.mode == "RGB": |
|
class_image = class_image.convert("RGB") |
|
example["class_images"] = self.image_transforms(class_image) |
|
example["class_prompt_ids"] = self.tokenizer( |
|
self.class_prompt, |
|
padding="do_not_pad", |
|
truncation=True, |
|
max_length=self.tokenizer.model_max_length, |
|
return_attention_mask=False, |
|
).input_ids |
|
|
|
return example |
|
|
|
|
|
class PromptDataset(Dataset): |
|
"A simple dataset to prepare the prompts to generate class images on multiple GPUs." |
|
|
|
def __init__(self, prompt, num_samples): |
|
self.prompt = prompt |
|
self.num_samples = num_samples |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
example["prompt"] = self.prompt |
|
example["index"] = index |
|
return example |
|
|
|
|
|
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): |
|
if token is None: |
|
token = HfFolder.get_token() |
|
if organization is None: |
|
username = whoami(token)["name"] |
|
return f"{username}/{model_id}" |
|
else: |
|
return f"{organization}/{model_id}" |
|
|
|
|
|
def main(): |
|
paddle.randn((1,)) |
|
args = parse_args() |
|
rank = paddle.distributed.get_rank() |
|
is_main_process = rank == 0 |
|
num_processes = paddle.distributed.get_world_size() |
|
if num_processes > 1: |
|
paddle.distributed.init_parallel_env() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if args.with_prior_preservation: |
|
class_images_dir = Path(args.class_data_dir) |
|
if not class_images_dir.exists(): |
|
class_images_dir.mkdir(parents=True) |
|
cur_class_images = len(list(class_images_dir.iterdir())) |
|
|
|
if cur_class_images < args.num_class_images: |
|
with context_nologging(): |
|
pipeline = DiffusionPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
safety_checker=None, |
|
) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
num_new_images = args.num_class_images - cur_class_images |
|
logger.info(f"Number of class images to sample: {num_new_images}.") |
|
|
|
sample_dataset = PromptDataset(args.class_prompt, num_new_images) |
|
batch_sampler = ( |
|
DistributedBatchSampler(sample_dataset, batch_size=args.sample_batch_size, shuffle=False) |
|
if num_processes > 1 |
|
else BatchSampler(sample_dataset, batch_size=args.sample_batch_size, shuffle=False) |
|
) |
|
sample_dataloader = DataLoader( |
|
sample_dataset, batch_sampler=batch_sampler, num_workers=args.dataloader_num_workers |
|
) |
|
|
|
for example in tqdm(sample_dataloader, desc="Generating class images", disable=not is_main_process, ncols=100): |
|
images = pipeline(example["prompt"]).images |
|
|
|
for i, image in enumerate(images): |
|
hash_image = hashlib.sha1(image.tobytes()).hexdigest() |
|
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" |
|
image.save(image_filename) |
|
pipeline.to("cpu") |
|
del pipeline |
|
gc.collect() |
|
|
|
if is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
print("正在下载模型权重,请耐心等待。。。。。。。。。。") |
|
with context_nologging(): |
|
|
|
if args.tokenizer_name: |
|
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name) |
|
elif args.pretrained_model_name_or_path: |
|
tokenizer = AutoTokenizer.from_pretrained(url_or_path_join(args.pretrained_model_name_or_path, "tokenizer")) |
|
|
|
|
|
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path) |
|
|
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
text_encoder = text_encoder_cls.from_pretrained( |
|
url_or_path_join(args.pretrained_model_name_or_path, "text_encoder") |
|
) |
|
text_config = text_encoder.config if isinstance(text_encoder.config, dict) else text_encoder.config.to_dict() |
|
if text_config.get("use_attention_mask", None) is not None and text_config["use_attention_mask"]: |
|
use_attention_mask = True |
|
else: |
|
use_attention_mask = False |
|
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") |
|
unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="unet", |
|
) |
|
|
|
|
|
freeze_params(vae.parameters()) |
|
freeze_params(text_encoder.parameters()) |
|
freeze_params(unet.parameters()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lora_attn_procs = {} |
|
for name in unet.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
|
|
lora_attn_procs[name] = LoRACrossAttnProcessor( |
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=args.lora_rank |
|
) |
|
|
|
unet.set_attn_processor(lora_attn_procs) |
|
lora_layers = AttnProcsLayers(unet.attn_processors) |
|
|
|
|
|
train_dataset = DreamBoothDataset( |
|
instance_data_root=args.instance_data_dir, |
|
instance_prompt=args.instance_prompt, |
|
class_data_root=args.class_data_dir if args.with_prior_preservation else None, |
|
class_prompt=args.class_prompt, |
|
tokenizer=tokenizer, |
|
height=args.height, |
|
width=args.width, |
|
center_crop=args.center_crop, |
|
interpolation="bilinear", |
|
random_flip=args.random_flip, |
|
) |
|
|
|
def collate_fn(examples): |
|
input_ids = [example["instance_prompt_ids"] for example in examples] |
|
pixel_values = [example["instance_images"] for example in examples] |
|
|
|
|
|
|
|
if args.with_prior_preservation: |
|
input_ids += [example["class_prompt_ids"] for example in examples] |
|
pixel_values += [example["class_images"] for example in examples] |
|
|
|
pixel_values = paddle.stack(pixel_values).astype("float32") |
|
|
|
input_ids = tokenizer.pad( |
|
{"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pd" |
|
).input_ids |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"pixel_values": pixel_values, |
|
} |
|
|
|
train_sampler = ( |
|
DistributedBatchSampler(train_dataset, batch_size=args.train_batch_size, shuffle=True) |
|
if num_processes > 1 |
|
else BatchSampler(train_dataset, batch_size=args.train_batch_size, shuffle=True) |
|
) |
|
train_dataloader = DataLoader( |
|
train_dataset, batch_sampler=train_sampler, collate_fn=collate_fn, num_workers=args.dataloader_num_workers |
|
) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * num_processes |
|
) |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
learning_rate=args.learning_rate, |
|
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, |
|
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, |
|
num_cycles=args.lr_num_cycles, |
|
power=args.lr_power, |
|
) |
|
|
|
|
|
optimizer = AdamW( |
|
learning_rate=lr_scheduler, |
|
parameters=lora_layers.parameters(), |
|
beta1=args.adam_beta1, |
|
beta2=args.adam_beta2, |
|
weight_decay=args.adam_weight_decay, |
|
epsilon=args.adam_epsilon, |
|
grad_clip=nn.ClipGradByGlobalNorm(args.max_grad_norm) if args.max_grad_norm > 0 else None, |
|
) |
|
|
|
if num_processes > 1: |
|
unet = paddle.DataParallel(unet) |
|
|
|
if is_main_process: |
|
logger.info("----------- Configuration Arguments -----------") |
|
for arg, value in sorted(vars(args).items()): |
|
logger.info("%s: %s" % (arg, value)) |
|
logger.info("------------------------------------------------") |
|
writer = get_report_to(args) |
|
|
|
|
|
total_batch_size = args.train_batch_size * num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
|
|
|
|
progress_bar = tqdm(range(args.max_train_steps), disable=not is_main_process, ncols=100) |
|
progress_bar.set_description("Train Steps") |
|
global_step = 0 |
|
vae.eval() |
|
text_encoder.eval() |
|
|
|
for epoch in range(args.num_train_epochs): |
|
unet.train() |
|
for step, batch in enumerate(train_dataloader): |
|
|
|
latents = vae.encode(batch["pixel_values"]).latent_dist.sample() |
|
latents = latents * 0.18215 |
|
|
|
|
|
noise = paddle.randn(latents.shape) |
|
batch_size = latents.shape[0] |
|
|
|
timesteps = paddle.randint(0, noise_scheduler.config.num_train_timesteps, (batch_size,)).cast("int64") |
|
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
if num_processes > 1 and ( |
|
args.gradient_checkpointing or ((step + 1) % args.gradient_accumulation_steps != 0) |
|
): |
|
|
|
|
|
|
|
unet_ctx_manager = unet.no_sync() |
|
else: |
|
unet_ctx_manager = contextlib.nullcontext() if sys.version_info >= (3, 7) else contextlib.suppress() |
|
|
|
if use_attention_mask: |
|
attention_mask = (batch["input_ids"] != tokenizer.pad_token_id).cast("int64") |
|
else: |
|
attention_mask = None |
|
encoder_hidden_states = text_encoder(batch["input_ids"], attention_mask=attention_mask)[0] |
|
|
|
with unet_ctx_manager: |
|
|
|
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample |
|
|
|
|
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
|
|
if args.with_prior_preservation: |
|
|
|
model_pred, model_pred_prior = model_pred.chunk(2, axis=0) |
|
target, target_prior = target.chunk(2, axis=0) |
|
|
|
|
|
loss = F.mse_loss(model_pred, target, reduction="mean") |
|
|
|
|
|
prior_loss = F.mse_loss(model_pred_prior, target_prior, reduction="mean") |
|
|
|
|
|
loss = loss + args.prior_loss_weight * prior_loss |
|
else: |
|
loss = F.mse_loss(model_pred, target, reduction="mean") |
|
|
|
if args.gradient_accumulation_steps > 1: |
|
loss = loss / args.gradient_accumulation_steps |
|
loss.backward() |
|
|
|
if (step + 1) % args.gradient_accumulation_steps == 0: |
|
if num_processes > 1 and args.gradient_checkpointing: |
|
fused_allreduce_gradients(lora_layers.parameters(), None) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.clear_grad() |
|
progress_bar.update(1) |
|
global_step += 1 |
|
step_loss = loss.item() * args.gradient_accumulation_steps |
|
logs = { |
|
"epoch": str(epoch).zfill(4), |
|
"step_loss": round(step_loss, 10), |
|
"lr": lr_scheduler.get_lr(), |
|
} |
|
progress_bar.set_postfix(**logs) |
|
|
|
if is_main_process: |
|
for name, val in logs.items(): |
|
if name == "epoch": |
|
continue |
|
writer.add_scalar(f"train/{name}", val, step=global_step) |
|
|
|
if global_step % args.checkpointing_steps == 0: |
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
with context_nologging(): |
|
unwrap_model(unet).save_attn_procs(save_path) |
|
print(f"\n Saved lora weights to {save_path}") |
|
|
|
if args.validation_prompt is not None and global_step % args.validation_steps == 0: |
|
with context_nologging(): |
|
logger.info( |
|
f"Running validation... \n Generating {args.num_validation_images} images with prompt:" |
|
f" {args.validation_prompt}." |
|
) |
|
|
|
pipeline = DiffusionPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
unet=unwrap_model(unet), |
|
safety_checker=None, |
|
) |
|
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
|
|
generator = paddle.Generator().manual_seed(args.seed) if args.seed else None |
|
images = [ |
|
pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0] |
|
for _ in range(args.num_validation_images) |
|
] |
|
png_save_path = os.path.join(args.output_dir, "validation_images") |
|
os.makedirs(png_save_path, exist_ok=True) |
|
if len(images) == 1: |
|
gird_image = images[0] |
|
elif len(images) == 2: |
|
gird_image = image_grid(images, 1, 2) |
|
else: |
|
display_images = 2 * (len(images) // 2) |
|
gird_image = image_grid(images[:display_images], 2, display_images // 2) |
|
gird_image.save(os.path.join(png_save_path, f"{global_step}.png")) |
|
|
|
np_images = np.stack([np.asarray(img) for img in images]) |
|
|
|
if args.report_to == "tensorboard": |
|
writer.add_images("test", np_images, epoch, dataformats="NHWC") |
|
else: |
|
writer.add_image("test", np_images, epoch, dataformats="NHWC") |
|
del pipeline |
|
gc.collect() |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if is_main_process: |
|
unet = unwrap_model(unet) |
|
unet.save_attn_procs(args.output_dir) |
|
|
|
|
|
|
|
with context_nologging(): |
|
pipeline = DiffusionPipeline.from_pretrained(args.pretrained_model_name_or_path, safety_checker=None) |
|
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
pipeline.unet.load_attn_procs(args.output_dir) |
|
|
|
|
|
if args.validation_prompt and args.num_validation_images > 0: |
|
generator = paddle.Generator().manual_seed(args.seed) if args.seed else None |
|
images = [ |
|
pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0] |
|
for _ in range(args.num_validation_images) |
|
] |
|
np_images = np.stack([np.asarray(img) for img in images]) |
|
|
|
if args.report_to == "tensorboard": |
|
writer.add_images("test", np_images, epoch, dataformats="NHWC") |
|
else: |
|
writer.add_image("test", np_images, epoch, dataformats="NHWC") |
|
|
|
writer.close() |
|
|
|
|
|
if args.push_to_hub: |
|
if args.hub_model_id is None: |
|
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) |
|
else: |
|
repo_name = args.hub_model_id |
|
|
|
_retry( |
|
create_repo, |
|
func_kwargs={"repo_id": repo_name, "exist_ok": True, "token": args.hub_token}, |
|
base_wait_time=1.0, |
|
max_retries=5, |
|
max_wait_time=10.0, |
|
) |
|
|
|
save_model_card( |
|
repo_name, |
|
images=images, |
|
base_model=args.pretrained_model_name_or_path, |
|
prompt=args.instance_prompt, |
|
repo_folder=args.output_dir, |
|
) |
|
|
|
logger.info(f"Pushing to {repo_name}") |
|
_retry( |
|
upload_folder, |
|
func_kwargs={ |
|
"repo_id": repo_name, |
|
"repo_type": "model", |
|
"folder_path": args.output_dir, |
|
"commit_message": "End of training", |
|
"token": args.hub_token, |
|
"ignore_patterns": ["checkpoint-*/*", "logs/*"], |
|
}, |
|
base_wait_time=1.0, |
|
max_retries=5, |
|
max_wait_time=20.0, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |