File size: 38,674 Bytes
4f23115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddlenlp.utils.log import logger
logger.set_level("WARNING")
import paddle
import argparse
import contextlib
import gc
import hashlib
import math
import os
import sys
import warnings
from pathlib import Path
from typing import Optional

import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import requests
from huggingface_hub import HfFolder, create_repo, upload_folder, whoami
from paddle.distributed.fleet.utils.hybrid_parallel_util import (
    fused_allreduce_gradients,
)
from utils import context_nologging, _retry
from paddle.io import BatchSampler, DataLoader, Dataset, DistributedBatchSampler
from paddle.optimizer import AdamW
from paddle.vision import BaseTransform, transforms
from PIL import Image
from tqdm.auto import tqdm

from paddlenlp.trainer import set_seed
from paddlenlp.transformers import AutoTokenizer, PretrainedConfig
from ppdiffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
    UNet2DConditionModel,
)
from ppdiffusers.loaders import AttnProcsLayers
from ppdiffusers.modeling_utils import freeze_params, unwrap_model
from ppdiffusers.models.cross_attention import LoRACrossAttnProcessor
from ppdiffusers.optimization import get_scheduler
from ppdiffusers.utils import image_grid

def str2bool(v):
    if v.lower() in ("yes", "true", "t", "y", "1"):
        return True
    elif v.lower() in ("no", "false", "f", "n", "0"):
        return False
    else:
        raise argparse.ArgumentTypeError("Unsupported value encountered.")

def url_or_path_join(*path_list):
    return os.path.join(*path_list) if os.path.isdir(os.path.join(*path_list)) else "/".join(path_list)


def save_model_card(repo_name, images=None, base_model=str, prompt=str, repo_folder=None):
    img_str = ""
    for i, image in enumerate(images):
        image.save(os.path.join(repo_folder, f"image_{i}.png"))
        img_str += f"![img_{i}](./image_{i}.png)\n"

    yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
instance_prompt: {prompt}
tags:
- stable-diffusion
- stable-diffusion-ppdiffusers
- text-to-image
- ppdiffusers
- lora
inference: false
---
    """
    model_card = f"""
# LoRA DreamBooth - {repo_name}
These are LoRA adaption weights for {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. \n
{img_str}
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str):
    try:
        text_encoder_config = PretrainedConfig.from_pretrained(
            url_or_path_join(pretrained_model_name_or_path, "text_encoder")
        )
        model_class = text_encoder_config.architectures[0]
    except Exception:
        model_class = "LDMBertModel"
    if model_class == "CLIPTextModel":
        from paddlenlp.transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from ppdiffusers.pipelines.alt_diffusion.modeling_roberta_series import (
            RobertaSeriesModelWithTransformation,
        )

        return RobertaSeriesModelWithTransformation
    elif model_class == "BertModel":
        from paddlenlp.transformers import BertModel

        return BertModel
    elif model_class == "LDMBertModel":
        from ppdiffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import (
            LDMBertModel,
        )

        return LDMBertModel
    else:
        raise ValueError(f"{model_class} is not supported.")


class Lambda(BaseTransform):
    def __init__(self, fn, keys=None):
        super().__init__(keys)
        self.fn = fn

    def _apply_image(self, img):
        return self.fn(img)


def get_report_to(args):
    if args.report_to == "visualdl":
        from visualdl import LogWriter

        writer = LogWriter(logdir=args.logging_dir)
    elif args.report_to == "tensorboard":
        from tensorboardX import SummaryWriter

        writer = SummaryWriter(logdir=args.logging_dir)
    else:
        raise ValueError("report_to must be in ['visualdl', 'tensorboard']")
    return writer


def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="Simple example of a training dreambooth lora script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
        required=True,
        help="The prompt with identifier specifying the instance",
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
        help="The prompt to specify images in the same class as provided instance images.",
    )
    parser.add_argument(
        "--validation_prompt", type=str, default=None, help="A prompt that is sampled during training for inference."
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=50,
        help=(
            "Run dreambooth validation every X global steps. Dreambooth validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`."
        ),
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
        help="Flag to add prior preservation loss.",
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
        ),
    )
    parser.add_argument(
        "--lora_rank",
        type=int,
        default=4,
        help=(
            "lora_rank"
        ),
    )  

    parser.add_argument(
        "--output_dir",
        type=str,
        default="lora-dreambooth-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--height",
        type=int,
        default=None,
        help=(
            "The height for input images, all the images in the train/validation dataset will be resized to this"
            " height"
        ),
    )
    parser.add_argument(
        "--width",
        type=int,
        default=None,
        help=(
            "The width for input images, all the images in the train/validation dataset will be resized to this"
            " width"
        ),
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )
    parser.add_argument(
        "--random_flip",
        action="store_true",
        help="whether to randomly flip images horizontally",
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=500,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=100,
        help=("Save a checkpoint of the training state every X updates."),
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", type=str2bool, nargs="?", const=False, help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) or [VisualDL](https://www.paddlepaddle.org.cn/paddle/visualdl) log directory. Will default to"
            "*output_dir/logs"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="visualdl",
        choices=["tensorboard", "visualdl"],
        help="Log writer type.",
    )
    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

    if args.instance_data_dir is None:
        raise ValueError("You must specify a train data directory.")

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
    else:
        # logger is not available yet
        if args.class_data_dir is not None:
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
        if args.class_prompt is not None:
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")

    args.logging_dir = os.path.join(args.output_dir, args.logging_dir)
    if args.height is None or args.width is None and args.resolution is not None:
        args.height = args.width = args.resolution

    return args


class DreamBoothDataset(Dataset):
    """
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
        height=512,
        width=512,
        center_crop=False,
        interpolation="bilinear",
        random_flip=False,
    ):
        self.height = height
        self.width = width
        self.center_crop = center_crop
        self.tokenizer = tokenizer

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
            raise ValueError("Instance images root doesn't exists.")
        ext = ["png", "jpg", "jpeg", "bmp", "PNG", "JPG", "JPEG", "BMP"]
        self.instance_images_path = []
        for p in Path(instance_data_root).iterdir():
            if any(suffix in p.name for suffix in ext):
                self.instance_images_path.append(p)
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
            self.class_images_path = []
            for p in Path(class_data_root).iterdir():
                if any(suffix in p.name for suffix in ext):
                    self.class_images_path.append(p)
            self.num_class_images = len(self.class_images_path)
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize((height, width), interpolation=interpolation),
                transforms.CenterCrop((height, width)) if center_crop else transforms.RandomCrop((height, width)),
                transforms.RandomHorizontalFlip() if random_flip else Lambda(lambda x: x),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
        example["instance_prompt_ids"] = self.tokenizer(
            self.instance_prompt,
            padding="do_not_pad",
            truncation=True,
            max_length=self.tokenizer.model_max_length,
            return_attention_mask=False,
        ).input_ids

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
            example["class_prompt_ids"] = self.tokenizer(
                self.class_prompt,
                padding="do_not_pad",
                truncation=True,
                max_length=self.tokenizer.model_max_length,
                return_attention_mask=False,
            ).input_ids

        return example


class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


def main():
    paddle.randn((1,))
    args = parse_args()
    rank = paddle.distributed.get_rank()
    is_main_process = rank == 0
    num_processes = paddle.distributed.get_world_size()
    if num_processes > 1:
        paddle.distributed.init_parallel_env()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Generate class images if prior preservation is enabled.
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            with context_nologging():
                pipeline = DiffusionPipeline.from_pretrained(
                    args.pretrained_model_name_or_path,
                    safety_checker=None,
                )
                pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            batch_sampler = (
                DistributedBatchSampler(sample_dataset, batch_size=args.sample_batch_size, shuffle=False)
                if num_processes > 1
                else BatchSampler(sample_dataset, batch_size=args.sample_batch_size, shuffle=False)
            )
            sample_dataloader = DataLoader(
                sample_dataset, batch_sampler=batch_sampler, num_workers=args.dataloader_num_workers
            )

            for example in tqdm(sample_dataloader, desc="Generating class images", disable=not is_main_process, ncols=100):
                images = pipeline(example["prompt"]).images

                for i, image in enumerate(images):
                    hash_image = hashlib.sha1(image.tobytes()).hexdigest()
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)
            pipeline.to("cpu")
            del pipeline
            gc.collect()

    if is_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

    print("正在下载模型权重,请耐心等待。。。。。。。。。。")
    with context_nologging():
        # Load the tokenizer
        if args.tokenizer_name:
            tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name)
        elif args.pretrained_model_name_or_path:
            tokenizer = AutoTokenizer.from_pretrained(url_or_path_join(args.pretrained_model_name_or_path, "tokenizer"))

        # import correct text encoder class
        text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path)

        # Load scheduler and models
        noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
        text_encoder = text_encoder_cls.from_pretrained(
            url_or_path_join(args.pretrained_model_name_or_path, "text_encoder")
        )
        text_config = text_encoder.config if isinstance(text_encoder.config, dict) else text_encoder.config.to_dict()
        if text_config.get("use_attention_mask", None) is not None and text_config["use_attention_mask"]:
            use_attention_mask = True
        else:
            use_attention_mask = False
        vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
        unet = UNet2DConditionModel.from_pretrained(
            args.pretrained_model_name_or_path,
            subfolder="unet",
        )

    # We only train the additional adapter LoRA layers
    freeze_params(vae.parameters())
    freeze_params(text_encoder.parameters())
    freeze_params(unet.parameters())

    # now we will add new LoRA weights to the attention layers
    # It's important to realize here how many attention weights will be added and of which sizes
    # The sizes of the attention layers consist only of two different variables:
    # 1) - the "hidden_size", which is increased according to `unet.config.block_out_channels`.
    # 2) - the "cross attention size", which is set to `unet.config.cross_attention_dim`.

    # Let's first see how many attention processors we will have to set.
    # For Stable Diffusion, it should be equal to:
    # - down blocks (2x attention layers) * (2x transformer layers) * (3x down blocks) = 12
    # - mid blocks (2x attention layers) * (1x transformer layers) * (1x mid blocks) = 2
    # - up blocks (2x attention layers) * (3x transformer layers) * (3x down blocks) = 18
    # => 32 layers

    # Set correct lora layers
    lora_attn_procs = {}
    for name in unet.attn_processors.keys():
        cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
        if name.startswith("mid_block"):
            hidden_size = unet.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = unet.config.block_out_channels[block_id]

        lora_attn_procs[name] = LoRACrossAttnProcessor(
            hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=args.lora_rank
        )

    unet.set_attn_processor(lora_attn_procs)
    lora_layers = AttnProcsLayers(unet.attn_processors)

    # Dataset and DataLoaders creation:
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
        tokenizer=tokenizer,
        height=args.height,
        width=args.width,
        center_crop=args.center_crop,
        interpolation="bilinear",
        random_flip=args.random_flip,
    )

    def collate_fn(examples):
        input_ids = [example["instance_prompt_ids"] for example in examples]
        pixel_values = [example["instance_images"] for example in examples]

        # Concat class and instance examples for prior preservation.
        # We do this to avoid doing two forward passes.
        if args.with_prior_preservation:
            input_ids += [example["class_prompt_ids"] for example in examples]
            pixel_values += [example["class_images"] for example in examples]

        pixel_values = paddle.stack(pixel_values).astype("float32")

        input_ids = tokenizer.pad(
            {"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pd"
        ).input_ids

        return {
            "input_ids": input_ids,
            "pixel_values": pixel_values,
        }

    train_sampler = (
        DistributedBatchSampler(train_dataset, batch_size=args.train_batch_size, shuffle=True)
        if num_processes > 1
        else BatchSampler(train_dataset, batch_size=args.train_batch_size, shuffle=True)
    )
    train_dataloader = DataLoader(
        train_dataset, batch_sampler=train_sampler, collate_fn=collate_fn, num_workers=args.dataloader_num_workers
    )

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * num_processes
        )

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        learning_rate=args.learning_rate,
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
    )

    # Optimizer creation
    optimizer = AdamW(
        learning_rate=lr_scheduler,
        parameters=lora_layers.parameters(),
        beta1=args.adam_beta1,
        beta2=args.adam_beta2,
        weight_decay=args.adam_weight_decay,
        epsilon=args.adam_epsilon,
        grad_clip=nn.ClipGradByGlobalNorm(args.max_grad_norm) if args.max_grad_norm > 0 else None,
    )

    if num_processes > 1:
        unet = paddle.DataParallel(unet)

    if is_main_process:
        logger.info("-----------  Configuration Arguments -----------")
        for arg, value in sorted(vars(args).items()):
            logger.info("%s: %s" % (arg, value))
        logger.info("------------------------------------------------")
        writer = get_report_to(args)

    # Train!
    total_batch_size = args.train_batch_size * num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=not is_main_process, ncols=100)
    progress_bar.set_description("Train Steps")
    global_step = 0
    vae.eval()
    text_encoder.eval()

    for epoch in range(args.num_train_epochs):
        unet.train()
        for step, batch in enumerate(train_dataloader):
            # Convert images to latent space
            latents = vae.encode(batch["pixel_values"]).latent_dist.sample()
            latents = latents * 0.18215

            # Sample noise that we'll add to the latents
            noise = paddle.randn(latents.shape)
            batch_size = latents.shape[0]
            # Sample a random timestep for each image
            timesteps = paddle.randint(0, noise_scheduler.config.num_train_timesteps, (batch_size,)).cast("int64")

            # Add noise to the latents according to the noise magnitude at each timestep
            # (this is the forward diffusion process)
            noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

            if num_processes > 1 and (
                args.gradient_checkpointing or ((step + 1) % args.gradient_accumulation_steps != 0)
            ):
                # grad acc, no_sync when (step + 1) % args.gradient_accumulation_steps != 0:
                # gradient_checkpointing, no_sync every where
                # gradient_checkpointing + grad_acc, no_sync every where
                unet_ctx_manager = unet.no_sync()
            else:
                unet_ctx_manager = contextlib.nullcontext() if sys.version_info >= (3, 7) else contextlib.suppress()

            if use_attention_mask:
                attention_mask = (batch["input_ids"] != tokenizer.pad_token_id).cast("int64")
            else:
                attention_mask = None
            encoder_hidden_states = text_encoder(batch["input_ids"], attention_mask=attention_mask)[0]

            with unet_ctx_manager:
                # Predict the noise residual / sample
                model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

                if args.with_prior_preservation:
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = model_pred.chunk(2, axis=0)
                    target, target_prior = target.chunk(2, axis=0)

                    # Compute instance loss
                    loss = F.mse_loss(model_pred, target, reduction="mean")

                    # Compute prior loss
                    prior_loss = F.mse_loss(model_pred_prior, target_prior, reduction="mean")

                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss
                else:
                    loss = F.mse_loss(model_pred, target, reduction="mean")

                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                loss.backward()

            if (step + 1) % args.gradient_accumulation_steps == 0:
                if num_processes > 1 and args.gradient_checkpointing:
                    fused_allreduce_gradients(lora_layers.parameters(), None)
                optimizer.step()
                lr_scheduler.step()
                optimizer.clear_grad()
                progress_bar.update(1)
                global_step += 1
                step_loss = loss.item() * args.gradient_accumulation_steps
                logs = {
                    "epoch": str(epoch).zfill(4),
                    "step_loss": round(step_loss, 10),
                    "lr": lr_scheduler.get_lr(),
                }
                progress_bar.set_postfix(**logs)

                if is_main_process:
                    for name, val in logs.items():
                        if name == "epoch":
                            continue
                        writer.add_scalar(f"train/{name}", val, step=global_step)

                    if global_step % args.checkpointing_steps == 0:
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        with context_nologging():
                            unwrap_model(unet).save_attn_procs(save_path)
                        print(f"\n Saved lora weights to {save_path}")

                    if args.validation_prompt is not None and global_step % args.validation_steps == 0:
                        with context_nologging():
                            logger.info(
                                    f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
                                    f" {args.validation_prompt}."
                                )
                            # create pipeline
                            pipeline = DiffusionPipeline.from_pretrained(
                                args.pretrained_model_name_or_path,
                                unet=unwrap_model(unet),
                                safety_checker=None,
                            )
                            pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
                            pipeline.set_progress_bar_config(disable=True)

                        # run inference
                        generator = paddle.Generator().manual_seed(args.seed) if args.seed else None
                        images = [
                            pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
                            for _ in range(args.num_validation_images)
                        ]
                        png_save_path = os.path.join(args.output_dir, "validation_images")
                        os.makedirs(png_save_path, exist_ok=True)
                        if len(images) == 1:
                            gird_image = images[0]
                        elif len(images) == 2:
                            gird_image = image_grid(images, 1, 2)
                        else:
                            display_images = 2 * (len(images) // 2)
                            gird_image = image_grid(images[:display_images], 2, display_images // 2)
                        gird_image.save(os.path.join(png_save_path, f"{global_step}.png"))

                        np_images = np.stack([np.asarray(img) for img in images])

                        if args.report_to == "tensorboard":
                            writer.add_images("test", np_images, epoch, dataformats="NHWC")
                        else:
                            writer.add_image("test", np_images, epoch, dataformats="NHWC")
                        del pipeline
                        gc.collect()

                if global_step >= args.max_train_steps:
                    break
    # Save the lora layers
    if is_main_process:
        unet = unwrap_model(unet)
        unet.save_attn_procs(args.output_dir)

        # Final inference
        # Load previous pipeline
        with context_nologging():
            pipeline = DiffusionPipeline.from_pretrained(args.pretrained_model_name_or_path, safety_checker=None)
            pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
            pipeline.set_progress_bar_config(disable=True)
        # load attention processors
        pipeline.unet.load_attn_procs(args.output_dir)

        # run inference
        if args.validation_prompt and args.num_validation_images > 0:
            generator = paddle.Generator().manual_seed(args.seed) if args.seed else None
            images = [
                pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
                for _ in range(args.num_validation_images)
            ]
            np_images = np.stack([np.asarray(img) for img in images])

            if args.report_to == "tensorboard":
                writer.add_images("test", np_images, epoch, dataformats="NHWC")
            else:
                writer.add_image("test", np_images, epoch, dataformats="NHWC")

        writer.close()

        # logic to push to HF Hub
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id

            _retry(
                create_repo,
                func_kwargs={"repo_id": repo_name, "exist_ok": True, "token": args.hub_token},
                base_wait_time=1.0,
                max_retries=5,
                max_wait_time=10.0,
            )

            save_model_card(
                repo_name,
                images=images,
                base_model=args.pretrained_model_name_or_path,
                prompt=args.instance_prompt,
                repo_folder=args.output_dir,
            )
            # Upload model
            logger.info(f"Pushing to {repo_name}")
            _retry(
                upload_folder,
                func_kwargs={
                    "repo_id": repo_name,
                    "repo_type": "model",
                    "folder_path": args.output_dir,
                    "commit_message": "End of training",
                    "token": args.hub_token,
                    "ignore_patterns": ["checkpoint-*/*", "logs/*"],
                },
                base_wait_time=1.0,
                max_retries=5,
                max_wait_time=20.0,
            )


if __name__ == "__main__":
    main()