File size: 7,453 Bytes
127e10d d0c0220 127e10d d0c0220 127e10d 097b358 127e10d d0c0220 127e10d d0c0220 0057ce2 d0c0220 127e10d d0c0220 127e10d 097b358 127e10d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
#! /usr/bin/python3
from termcolor import cprint, colored
from super_gradients.common.object_names import Models
from super_gradients.training import models
from super_gradients.conversion import ExportTargetBackend, ExportQuantizationMode, DetectionOutputFormatMode
import time
import cv2
import numpy as np
from super_gradients.training.utils.media.image import load_image
import onnxruntime
import os
from super_gradients.training.utils.visualization.pose_estimation import PoseVisualization
import matplotlib.pyplot as plt
from datasets import load_dataset
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import matplotlib.pyplot as plt
os.environ['CRASH_HANDLER']='0'
# Conversion Setting
CONVERSION = True
input_image_shape = [640, 640]
quantization_modes = [ExportQuantizationMode.INT8, ExportQuantizationMode.FP16, None]
output_predictions_format=DetectionOutputFormatMode.FLAT_FORMAT
# NMS-related Setting
confidence_threshold=.15
nms_threshold=.2
num_pre_nms_predictions=1000
max_predictions_per_image=10
# ONNXruntime Benchmark Setting
BENCHMARK=True
n_run = 1000
n_warm_up = 200
image_name = "https://deci-pretrained-models.s3.amazonaws.com/sample_images/beatles-abbeyroad.jpg"
# Check
SHAPE_CHECK=True
VISUAL_CHECK=True
CALIBRATION_DATASET_CHECK=False
# Function to convert tensor to image for visualization
def tensor_to_image(tensor):
# Convert the tensor to a numpy array
numpy_image = tensor.numpy()
# The output of ToTensor() is in C x H x W format, convert to H x W x C
numpy_image = numpy_image.transpose(1, 2, 0)
# Undo the normalization (if any)
# numpy_image = numpy_image * std + mean # Adjust based on your normalization
return numpy_image
class HFDatasetWrapper(Dataset):
def __init__(self, hf_dataset, transform=None):
self.hf_dataset = hf_dataset
self.transform = transform
def __len__(self):
return len(self.hf_dataset)
def __getitem__(self, idx):
item = self.hf_dataset[idx]
if self.transform:
item = self.transform(item)
return item['image']
def preprocess(data):
# Convert byte data to PIL Image
image = data['image']
# Convert to RGB if not already
if image.mode != 'RGB':
image = image.convert('RGB')
# Define your transformations
transform = transforms.Compose([
transforms.Resize((640, 640)), # Resize (example size)
transforms.ToTensor(), # Convert to tensor
# Add normalization or other transformations if needed
])
# Process Image
transformed = transform(image)
if CALIBRATION_DATASET_CHECK:
# Display the Processed Image
plt_image = tensor_to_image(transformed)
plt.imshow(plt_image)
plt.axis('off') # Turn off axis numbers
plt.show()
return {'image': transformed}
def iterate_over_flat_predictions(predictions, batch_size):
[flat_predictions] = predictions
for image_index in range(batch_size):
mask = flat_predictions[:, 0] == image_index
pred_bboxes = flat_predictions[mask, 1:5]
pred_scores = flat_predictions[mask, 5]
pred_joints = flat_predictions[mask, 6:].reshape((len(pred_bboxes), -1, 3))
yield image_index, pred_bboxes, pred_scores, pred_joints
def show_predictions_from_flat_format(image, predictions):
image_index, pred_boxes, pred_scores, pred_joints = next(iter(iterate_over_flat_predictions(predictions, 1)))
image = PoseVisualization.draw_poses(
image=image, poses=pred_joints, scores=pred_scores, boxes=pred_boxes,
edge_links=None, edge_colors=None, keypoint_colors=None, is_crowd=None
)
plt.figure(figsize=(8, 8))
plt.imshow(image)
plt.tight_layout()
plt.show()
image = load_image(image_name)
image = cv2.resize(image, (input_image_shape[1], input_image_shape[0]))
image_bchw = np.transpose(np.expand_dims(image, 0), (0, 3, 1, 2))
# Prepare Calibration Dataset for INT8 Quantization
dataset = load_dataset("cppe-5", split="train")
hf_dataset_wrapper = HFDatasetWrapper(dataset, transform=preprocess)
calibration_loader = DataLoader(hf_dataset_wrapper, batch_size=8)
for model_name in [Models.YOLO_NAS_POSE_L, Models.YOLO_NAS_POSE_M, Models.YOLO_NAS_POSE_N, Models.YOLO_NAS_POSE_S ]:
for q in quantization_modes:
# Specify Quantization Mode in Exported ONNX Model Name
if q == None:
q_label = 'fp32'
elif q == ExportQuantizationMode.INT8:
q_label = 'int8'
elif q == ExportQuantizationMode.FP16:
q_label = 'fp16'
else:
raise
export_name = f"{model_name}_{q_label}.onnx"
# Perform Model Conversion from PyTorch to ONNX using Super-Gradiant Official Method
print(f"1. Convert {colored(model_name,'blue')} from PyTorch to ONNX format using {colored(q_label,'red')} precision, saved as {colored(export_name,'green')}")
if CONVERSION:
model = models.get(model_name, pretrained_weights="coco_pose")
export_result = model.export(
output=export_name,
confidence_threshold=confidence_threshold,
nms_threshold=nms_threshold,
engine=ExportTargetBackend.ONNXRUNTIME,
quantization_mode=q,
#selective_quantizer: Optional["SelectiveQuantizer"] = None, # noqa
calibration_loader = calibration_loader,
#calibration_method: str = "percentile",
#calibration_batches: int = 16,
#calibration_percentile: float = 99.99,
preprocessing=True,
postprocessing=True,
#postprocessing_kwargs: Optional[dict] = None,
batch_size=1,
input_image_shape=input_image_shape,
#input_image_channels: Optional[int] = None,
#input_image_dtype: Optional[torch.dtype] = None,
max_predictions_per_image=max_predictions_per_image,
onnx_export_kwargs={"opset_version":14},
onnx_simplify=True,
#device: Optional[Union[torch.device, str]] = None,
output_predictions_format=output_predictions_format,
num_pre_nms_predictions=num_pre_nms_predictions,
)
# Export Also Model Usage in Text
usage_name = export_name + '.usage.txt'
with open(usage_name, 'w') as f:
f.write(str(export_result))
print(f"1.1 Related usage to {colored(export_name, 'green')} has been stored to {colored(usage_name,'yellow')}")
if BENCHMARK:
# Perform Inference on ONNXruntime
session = onnxruntime.InferenceSession(export_name, providers=['CUDAExecutionProvider',"CPUExecutionProvider"])
inputs = [o.name for o in session.get_inputs()]
outputs = [o.name for o in session.get_outputs()]
# Detection Result Shape
for i in range(n_warm_up): result = session.run(outputs, {inputs[0]: image_bchw})
t=time.time()
for i in range(n_run): result = session.run(outputs, {inputs[0]: image_bchw})
latency=(time.time()-t)/n_run
fps = round(1/latency,2)
print(f'2. Averaged FPS: {colored(fps, "red")}')
if SHAPE_CHECK:
for image_index, pred_bboxes, pred_scores, pred_joints in iterate_over_flat_predictions(result, batch_size=1):
N = pred_scores.shape[0]
for i in range(N):
print(f'Detected Object {colored(i,"green")}')
print(f'Predicted Bounding Box (Dimension: 1 x 4)', pred_bboxes[i,:])
print(f'Pose Confidence (scalar)', pred_scores[i])
print(f'Predicted Joints (Dimension: 3 x 17)', pred_joints[i,:,:])
if VISUAL_CHECK:
# Detection Result Visual Check
show_predictions_from_flat_format(image, result)
|