PersianEase
This model is fine-tuned to generate informal text from formal text based on the input provided. It has been fine-tuned on [Mohavere Dataset] (Takalli vahideh, Kalantari, Fateme, Shamsfard, Mehrnoush, Developing an Informal-Formal Persian Corpus, 2022.) using the pretrained model persian-t5-formality-transfer.
Evaluation Metrics
Metric | Basic Model | Base Persian T5 | Previous Semester Model | Our Model |
---|---|---|---|---|
BLEU-1 | 0.269 | 0.256 | 0.397 | 0.664 |
BLEU-2 | 0.137 | 0.171 | 0.299 | 0.539 |
BLEU-3 | 0.084 | 0.121 | 0.231 | 0.444 |
BLEU-4 | 0.054 | 0.086 | 0.177 | 0.364 |
Bert-Score Precision | 0.581 | 0.583 | 0.665 | 0.826 |
Bert-Score Recall | 0.629 | 0.614 | 0.659 | 0.820 |
Bert-Score F1 Score | 0.603 | 0.595 | 0.658 | 0.822 |
ROUGE-1 F1 Score | 0.259 | - | - | 0.701 |
ROUGE-2 F1 Score | 0.061 | - | - | 0.475 |
ROUGE-l F1 Score | 0.250 | - | - | 0.675 |
Usage
from transformers import (T5ForConditionalGeneration, AutoTokenizer, pipeline)
import torch
model = T5ForConditionalGeneration.from_pretrained('parsi-ai-nlpclass/PersianEase')
tokenizer = AutoTokenizer.from_pretrained('parsi-ai-nlpclass/PersianEase')
pipe = pipeline(task='text2text-generation', model=model, tokenizer=tokenizer)
def test_model(text):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
inputs = tokenizer.encode("formal: " + text, return_tensors='pt', max_length=128, truncation=True, padding='max_length')
inputs = inputs.to(device)
outputs = model.generate(inputs, max_length=128, num_beams=4, temperature=0.7)
print("Output:", tokenizer.decode(outputs[0], skip_special_tokens=True))
text = " من فقط میخواستم بگویم که چقدر قدردان همه چیزهایی هستم که برای من انجام داده ای."
print("Original:", text)
test_model(text)
# output: من فقط میخوام بگم که چقدر قدردان همه کاریم که برای من انجام دادی. دوستی تو برای من یه هدیه بزرگه و من همیشه از داشتن یه دوست مثل تو خوشحالم.
text = " آرزویش است او را یک رستوران ببرم."
print("Original:", text)
test_model(text)
# output: آرزوشه یه رستوران ببرمش
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.