Edit model card
Parler Logo

Parler-TTS Mini v0.1

Open in HuggingFace
  • Fine-tuning guide on Colab:
Open In Colab

Parler-TTS Mini v0.1 is a lightweight text-to-speech (TTS) model, trained on 10.5K hours of audio data, that can generate high-quality, natural sounding speech with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation). It is the first release model from the Parler-TTS project, which aims to provide the community with TTS training resources and dataset pre-processing code.

Usage

Using Parler-TTS is as simple as "bonjour". Simply install the library once:

pip install git+https://github.com/huggingface/parler-tts.git

You can then use the model with the following inference snippet:

import torch
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer
import soundfile as sf

device = "cuda:0" if torch.cuda.is_available() else "cpu"

model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler_tts_mini_v0.1").to(device)
tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler_tts_mini_v0.1")

prompt = "Hey, how are you doing today?"
description = "A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast."

input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)

generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
audio_arr = generation.cpu().numpy().squeeze()
sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate)

Tips:

  • Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise
  • Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech
  • The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt

Motivation

Parler-TTS is a reproduction of work from the paper Natural language guidance of high-fidelity text-to-speech with synthetic annotations by Dan Lyth and Simon King, from Stability AI and Edinburgh University respectively.

Contrarily to other TTS models, Parler-TTS is a fully open-source release. All of the datasets, pre-processing, training code and weights are released publicly under permissive license, enabling the community to build on our work and develop their own powerful TTS models. Parler-TTS was released alongside:

Citation

If you found this repository useful, please consider citing this work and also the original Stability AI paper:

@misc{lacombe-etal-2024-parler-tts,
  author = {Yoach Lacombe and Vaibhav Srivastav and Sanchit Gandhi},
  title = {Parler-TTS},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/huggingface/parler-tts}}
}
@misc{lyth2024natural,
      title={Natural language guidance of high-fidelity text-to-speech with synthetic annotations},
      author={Dan Lyth and Simon King},
      year={2024},
      eprint={2402.01912},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}

License

This model is permissively licensed under the Apache 2.0 license.

Downloads last month
25,336
Safetensors
Model size
647M params
Tensor type
F32
Β·
Inference Examples
Inference API (serverless) has been turned off for this model.

Datasets used to train parler-tts/parler_tts_mini_v0.1

Spaces using parler-tts/parler_tts_mini_v0.1 21

Collections including parler-tts/parler_tts_mini_v0.1