|
--- |
|
language: |
|
- en |
|
library_name: transformers |
|
license: other |
|
datasets: |
|
- psmathur/orca_mini_v1_dataset |
|
- ehartford/dolphin |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# orca_mini_v3_70b |
|
|
|
A Llama2-70b model trained on Orca Style datasets. |
|
|
|
|
|
<br> |
|
|
|
![orca-mini](https://huggingface.co/psmathur/orca_mini_v3_70b/resolve/main/orca_minis_small.jpeg) |
|
|
|
|
|
<br> |
|
|
|
**P.S. If you're interested to collaborate, please connect with me at www.linkedin.com/in/pankajam.** |
|
|
|
<br> |
|
|
|
### quantized versions |
|
|
|
Big thanks to [@TheBloke](https://huggingface.co/TheBloke) |
|
|
|
1) https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML |
|
|
|
2) https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ |
|
|
|
<br> |
|
|
|
#### license disclaimer: |
|
|
|
This model is bound by the license & usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind. |
|
|
|
<br> |
|
|
|
## Evaluation |
|
|
|
We evaluated orca_mini_v3_70b on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI. |
|
|
|
Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
|
|
||| |
|
|:------:|:--------:| |
|
|**Task**|**Value**| |
|
|*ARC*|0.7125| |
|
|*HellaSwag*|0.8785| |
|
|*MMLU*|0.7018| |
|
|*TruthfulQA*|0.6127| |
|
|*Winogrande*|0.8272| |
|
|*GSM8K*|0.4086| |
|
|*DROP*|0.4017| |
|
|**Total Average**|**0.649**| |
|
|
|
|
|
<br> |
|
|
|
### Prompt Format |
|
|
|
``` |
|
### System: |
|
You are an AI assistant that follows instruction extremely well. Help as much as you can. |
|
|
|
### User: |
|
Tell me about Orcas. |
|
|
|
### Assistant: |
|
|
|
``` |
|
|
|
#### OobaBooga Instructions: |
|
|
|
This model required upto 45GB GPU VRAM in 4bit so it can be loaded directly on Single RTX 6000/L40/A40/A100/H100 GPU or Double RTX 4090/L4/A10/RTX 3090/RTX A5000 |
|
So, if you have access to Machine with 45GB GPU VRAM and have installed [OobaBooga Web UI](https://github.com/oobabooga/text-generation-webui) on it. |
|
You can just download this model by using HF repo link directly on OobaBooga Web UI "Model" Tab/Page & Just use **load-in-4bit** option in it. |
|
|
|
![model_load_screenshot](https://huggingface.co/pankajmathur/model_101/resolve/main/oobabooga_model_load_screenshot.png) |
|
|
|
|
|
After that go to Default Tab/Page on OobaBooga Web UI and **copy paste above prompt format into Input** and Enjoy! |
|
|
|
![default_input_screenshot](https://huggingface.co/pankajmathur/model_101/resolve/main/default_input_screenshot.png) |
|
|
|
<br> |
|
|
|
#### Code Instructions: |
|
|
|
Below shows a code example on how to use this model |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("psmathur/orca_mini_v3_70b") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"psmathur/orca_mini_v3_70b", |
|
torch_dtype=torch.float16, |
|
load_in_4bit=True, |
|
low_cpu_mem_usage=True, |
|
device_map="auto" |
|
) |
|
system_prompt = "### System:\nYou are an AI assistant that follows instruction extremely well. Help as much as you can.\n\n" |
|
|
|
#generate text steps |
|
instruction = "Tell me about Orcas." |
|
prompt = f"{system_prompt}### User: {instruction}\n\n### Assistant:\n" |
|
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") |
|
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=4096) |
|
|
|
print(tokenizer.decode(output[0], skip_special_tokens=True)) |
|
|
|
``` |
|
|
|
<br> |
|
|
|
#### Limitations & Biases: |
|
|
|
While this model aims for accuracy, it can occasionally produce inaccurate or misleading results. |
|
|
|
Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content. |
|
|
|
Exercise caution and cross-check information when necessary. |
|
|
|
<br> |
|
|
|
### Citiation: |
|
|
|
Please kindly cite using the following BibTeX: |
|
|
|
``` |
|
@misc{orca_mini_v3_70b, |
|
author = {Pankaj Mathur}, |
|
title = {orca_mini_v3_70b: An Orca Style Llama2-70b model}, |
|
month = {august}, |
|
year = {2023}, |
|
publisher = {HuggingFace}, |
|
journal = {HuggingFace repository}, |
|
howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v3_70b}, |
|
} |
|
``` |
|
|
|
``` |
|
@misc{mukherjee2023orca, |
|
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, |
|
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah}, |
|
year={2023}, |
|
eprint={2306.02707}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
``` |
|
@software{touvron2023llama2, |
|
title={Llama 2: Open Foundation and Fine-Tuned Chat Models}, |
|
author={Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, |
|
Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, |
|
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, |
|
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, |
|
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, |
|
Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu , Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, |
|
Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom}, |
|
year={2023} |
|
} |
|
``` |