ouvic215's picture
End of training
fb832f7
metadata
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
datasets:
  - lambdalabs/pokemon-blip-captions
tags:
  - stable-diffusion
  - stable-diffusion-diffusers
  - text-to-image
  - diffusers
inference: true

Text-to-image finetuning - ouvic215/sd-pokemon-model-200-steps

This pipeline was finetuned from runwayml/stable-diffusion-v1-5 on the lambdalabs/pokemon-blip-captions dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['pokemon yoda']:

val_imgs_grid

Pipeline usage

You can use the pipeline like so:

from diffusers import DiffusionPipeline
import torch

pipeline = DiffusionPipeline.from_pretrained("ouvic215/sd-pokemon-model-200-steps", torch_dtype=torch.float16)
prompt = "pokemon yoda"
image = pipeline(prompt).images[0]
image.save("my_image.png")

Training info

These are the key hyperparameters used during training:

  • Epochs: 100
  • Learning rate: 1e-05
  • Batch size: 16
  • Gradient accumulation steps: 4
  • Image resolution: 512
  • Mixed-precision: fp16