|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
import tnkeeh as tn |
|
|
|
test_dataset = load_dataset("common_voice", "ar", split="test") |
|
wer = load_metric("wer") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec2-large-xlsr-arabic") |
|
model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec2-large-xlsr-arabic") |
|
model.to("cuda") |
|
|
|
|
|
chars_to_ignore_regex = '[\؛\—\_get\«\»\ـ\ـ\,\?\.\!\-\;\:\"\“\%\‘\”\�\#\،\☭,\؟\'ۚ\چ\ڨ\ﺃ\ھ\ﻻ\'ۖ]' |
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
|
|
|
|
|
|
def speech_file_to_array_fn(batch): |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
cleander = tn.Tnkeeh(remove_diacritics=True) |
|
test_dataset = cleander.clean_hf_dataset(test_dataset, 'sentence') |
|
|
|
|
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=32) |
|
|
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |