added my scripts
Browse files- evaluate.py +46 -0
- finetune.sh +37 -0
- run_common_voice.py +518 -0
evaluate.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchaudio
|
3 |
+
from datasets import load_dataset, load_metric
|
4 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
5 |
+
import re
|
6 |
+
import tnkeeh as tn
|
7 |
+
|
8 |
+
test_dataset = load_dataset("common_voice", "ar", split="test")
|
9 |
+
wer = load_metric("wer")
|
10 |
+
|
11 |
+
processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec2-large-xlsr-arabic")
|
12 |
+
model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec2-large-xlsr-arabic")
|
13 |
+
model.to("cuda")
|
14 |
+
|
15 |
+
#chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]'
|
16 |
+
chars_to_ignore_regex = '[\؛\—\_get\«\»\ـ\ـ\,\?\.\!\-\;\:\"\“\%\‘\”\�\#\،\☭,\؟\'ۚ\چ\ڨ\ﺃ\ھ\ﻻ\'ۖ]'
|
17 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
18 |
+
|
19 |
+
|
20 |
+
# Preprocessing the datasets.
|
21 |
+
# We need to read the aduio files as arrays
|
22 |
+
def speech_file_to_array_fn(batch):
|
23 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
24 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
25 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
26 |
+
return batch
|
27 |
+
|
28 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
29 |
+
# For arabic diacritics
|
30 |
+
cleander = tn.Tnkeeh(remove_diacritics=True)
|
31 |
+
test_dataset = cleander.clean_hf_dataset(test_dataset, 'sentence')
|
32 |
+
# Preprocessing the datasets.
|
33 |
+
# We need to read the aduio files as arrays
|
34 |
+
def evaluate(batch):
|
35 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
36 |
+
|
37 |
+
with torch.no_grad():
|
38 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
39 |
+
|
40 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
41 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
42 |
+
return batch
|
43 |
+
|
44 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=32)
|
45 |
+
|
46 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
finetune.sh
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
export model_path=$1
|
4 |
+
mkdir -p ${model_path}
|
5 |
+
|
6 |
+
python run_common_voice.py \
|
7 |
+
--dataloader_num_workers="8" \
|
8 |
+
--model_name_or_path="facebook/wav2vec2-large-xlsr-53" \
|
9 |
+
#--overwrite_output_dir \
|
10 |
+
--dataset_config_name="ar" \
|
11 |
+
--output_dir=${model_path} \
|
12 |
+
--num_train_epochs="50" \
|
13 |
+
--per_device_train_batch_size="16" \
|
14 |
+
--per_device_eval_batch_size="16" \
|
15 |
+
--evaluation_strategy="steps" \
|
16 |
+
--warmup_steps="500" \
|
17 |
+
--fp16 \
|
18 |
+
--freeze_feature_extractor \
|
19 |
+
--save_steps="400" \
|
20 |
+
--eval_steps="400" \
|
21 |
+
--logging_steps="400" \
|
22 |
+
--save_total_limit="1" \
|
23 |
+
--group_by_length \
|
24 |
+
--attention_dropout="0.094" \
|
25 |
+
--activation_dropout="0.055" \
|
26 |
+
--feat_proj_dropout="0.04" \
|
27 |
+
--hidden_dropout="0.047" \
|
28 |
+
--layerdrop="0.041" \
|
29 |
+
--mask_time_prob="0.082" \
|
30 |
+
--gradient_checkpointing \
|
31 |
+
--learning_rate="3e-4" \
|
32 |
+
--do_train --do_eval
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
run_common_voice.py
ADDED
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import sys
|
7 |
+
from dataclasses import dataclass, field
|
8 |
+
from typing import Any, Dict, List, Optional, Union
|
9 |
+
|
10 |
+
import datasets
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import torchaudio
|
14 |
+
from packaging import version
|
15 |
+
from torch import nn
|
16 |
+
|
17 |
+
import transformers
|
18 |
+
from transformers import (
|
19 |
+
HfArgumentParser,
|
20 |
+
Trainer,
|
21 |
+
TrainingArguments,
|
22 |
+
Wav2Vec2CTCTokenizer,
|
23 |
+
Wav2Vec2FeatureExtractor,
|
24 |
+
Wav2Vec2ForCTC,
|
25 |
+
Wav2Vec2Processor,
|
26 |
+
is_apex_available,
|
27 |
+
set_seed,
|
28 |
+
)
|
29 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
30 |
+
|
31 |
+
|
32 |
+
if is_apex_available():
|
33 |
+
from apex import amp
|
34 |
+
|
35 |
+
import tnkeeh as tn
|
36 |
+
|
37 |
+
if version.parse(torch.__version__) >= version.parse("1.6"):
|
38 |
+
_is_native_amp_available = True
|
39 |
+
from torch.cuda.amp import autocast
|
40 |
+
|
41 |
+
logger = logging.getLogger(__name__)
|
42 |
+
|
43 |
+
|
44 |
+
def list_field(default=None, metadata=None):
|
45 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
46 |
+
|
47 |
+
|
48 |
+
@dataclass
|
49 |
+
class ModelArguments:
|
50 |
+
"""
|
51 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
52 |
+
"""
|
53 |
+
|
54 |
+
model_name_or_path: str = field(
|
55 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
56 |
+
)
|
57 |
+
cache_dir: Optional[str] = field(
|
58 |
+
default=None,
|
59 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
60 |
+
)
|
61 |
+
freeze_feature_extractor: Optional[bool] = field(
|
62 |
+
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
|
63 |
+
)
|
64 |
+
attention_dropout: Optional[float] = field(
|
65 |
+
default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."}
|
66 |
+
)
|
67 |
+
activation_dropout: Optional[float] = field(
|
68 |
+
default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
69 |
+
)
|
70 |
+
hidden_dropout: Optional[float] = field(
|
71 |
+
default=0.1,
|
72 |
+
metadata={
|
73 |
+
"help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler."
|
74 |
+
},
|
75 |
+
)
|
76 |
+
feat_proj_dropout: Optional[float] = field(
|
77 |
+
default=0.1,
|
78 |
+
metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."},
|
79 |
+
)
|
80 |
+
mask_time_prob: Optional[float] = field(
|
81 |
+
default=0.05,
|
82 |
+
metadata={
|
83 |
+
"help": "Propability of each feature vector along the time axis to be chosen as the start of the vector"
|
84 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
85 |
+
"vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``."
|
86 |
+
},
|
87 |
+
)
|
88 |
+
gradient_checkpointing: Optional[bool] = field(
|
89 |
+
default=True,
|
90 |
+
metadata={
|
91 |
+
"help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass."
|
92 |
+
},
|
93 |
+
)
|
94 |
+
layerdrop: Optional[float] = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
95 |
+
|
96 |
+
|
97 |
+
@dataclass
|
98 |
+
class DataTrainingArguments:
|
99 |
+
"""
|
100 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
101 |
+
|
102 |
+
Using `HfArgumentParser` we can turn this class
|
103 |
+
into argparse arguments to be able to specify them on
|
104 |
+
the command line.
|
105 |
+
"""
|
106 |
+
|
107 |
+
dataset_config_name: Optional[str] = field(
|
108 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
109 |
+
)
|
110 |
+
train_split_name: Optional[str] = field(
|
111 |
+
default="train+validation",
|
112 |
+
metadata={
|
113 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
114 |
+
},
|
115 |
+
)
|
116 |
+
overwrite_cache: bool = field(
|
117 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
118 |
+
)
|
119 |
+
preprocessing_num_workers: Optional[int] = field(
|
120 |
+
default=None,
|
121 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
122 |
+
)
|
123 |
+
max_train_samples: Optional[int] = field(
|
124 |
+
default=None,
|
125 |
+
metadata={
|
126 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
127 |
+
"value if set."
|
128 |
+
},
|
129 |
+
)
|
130 |
+
max_val_samples: Optional[int] = field(
|
131 |
+
default=None,
|
132 |
+
metadata={
|
133 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
134 |
+
"value if set."
|
135 |
+
},
|
136 |
+
)
|
137 |
+
chars_to_ignore: List[str] = list_field(
|
138 |
+
default=[",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�"],
|
139 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
140 |
+
)
|
141 |
+
|
142 |
+
|
143 |
+
@dataclass
|
144 |
+
class DataCollatorCTCWithPadding:
|
145 |
+
"""
|
146 |
+
Data collator that will dynamically pad the inputs received.
|
147 |
+
Args:
|
148 |
+
processor (:class:`~transformers.Wav2Vec2Processor`)
|
149 |
+
The processor used for proccessing the data.
|
150 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
151 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
152 |
+
among:
|
153 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
154 |
+
sequence if provided).
|
155 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
156 |
+
maximum acceptable input length for the model if that argument is not provided.
|
157 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
158 |
+
different lengths).
|
159 |
+
max_length (:obj:`int`, `optional`):
|
160 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
161 |
+
max_length_labels (:obj:`int`, `optional`):
|
162 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
163 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
164 |
+
If set will pad the sequence to a multiple of the provided value.
|
165 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
166 |
+
7.5 (Volta).
|
167 |
+
"""
|
168 |
+
|
169 |
+
processor: Wav2Vec2Processor
|
170 |
+
padding: Union[bool, str] = True
|
171 |
+
max_length: Optional[int] = None
|
172 |
+
max_length_labels: Optional[int] = None
|
173 |
+
pad_to_multiple_of: Optional[int] = None
|
174 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
175 |
+
|
176 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
177 |
+
# split inputs and labels since they have to be of different lenghts and need
|
178 |
+
# different padding methods
|
179 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
180 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
181 |
+
|
182 |
+
batch = self.processor.pad(
|
183 |
+
input_features,
|
184 |
+
padding=self.padding,
|
185 |
+
max_length=self.max_length,
|
186 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
187 |
+
return_tensors="pt",
|
188 |
+
)
|
189 |
+
with self.processor.as_target_processor():
|
190 |
+
labels_batch = self.processor.pad(
|
191 |
+
label_features,
|
192 |
+
padding=self.padding,
|
193 |
+
max_length=self.max_length_labels,
|
194 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
195 |
+
return_tensors="pt",
|
196 |
+
)
|
197 |
+
|
198 |
+
# replace padding with -100 to ignore loss correctly
|
199 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
200 |
+
|
201 |
+
batch["labels"] = labels
|
202 |
+
|
203 |
+
return batch
|
204 |
+
|
205 |
+
|
206 |
+
class CTCTrainer(Trainer):
|
207 |
+
def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
|
208 |
+
"""
|
209 |
+
Perform a training step on a batch of inputs.
|
210 |
+
|
211 |
+
Subclass and override to inject custom behavior.
|
212 |
+
|
213 |
+
Args:
|
214 |
+
model (:obj:`nn.Module`):
|
215 |
+
The model to train.
|
216 |
+
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
|
217 |
+
The inputs and targets of the model.
|
218 |
+
|
219 |
+
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
|
220 |
+
argument :obj:`labels`. Check your model's documentation for all accepted arguments.
|
221 |
+
|
222 |
+
Return:
|
223 |
+
:obj:`torch.Tensor`: The tensor with training loss on this batch.
|
224 |
+
"""
|
225 |
+
|
226 |
+
model.train()
|
227 |
+
inputs = self._prepare_inputs(inputs)
|
228 |
+
|
229 |
+
if self.use_amp:
|
230 |
+
with autocast():
|
231 |
+
loss = self.compute_loss(model, inputs)
|
232 |
+
else:
|
233 |
+
loss = self.compute_loss(model, inputs)
|
234 |
+
|
235 |
+
if self.args.n_gpu > 1:
|
236 |
+
if model.module.config.ctc_loss_reduction == "mean":
|
237 |
+
loss = loss.mean()
|
238 |
+
elif model.module.config.ctc_loss_reduction == "sum":
|
239 |
+
loss = loss.sum() / (inputs["labels"] >= 0).sum()
|
240 |
+
else:
|
241 |
+
raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']")
|
242 |
+
|
243 |
+
if self.args.gradient_accumulation_steps > 1:
|
244 |
+
loss = loss / self.args.gradient_accumulation_steps
|
245 |
+
|
246 |
+
if self.use_amp:
|
247 |
+
self.scaler.scale(loss).backward()
|
248 |
+
elif self.use_apex:
|
249 |
+
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
|
250 |
+
scaled_loss.backward()
|
251 |
+
elif self.deepspeed:
|
252 |
+
self.deepspeed.backward(loss)
|
253 |
+
else:
|
254 |
+
loss.backward()
|
255 |
+
|
256 |
+
return loss.detach()
|
257 |
+
|
258 |
+
|
259 |
+
def main():
|
260 |
+
# See all possible arguments in src/transformers/training_args.py
|
261 |
+
# or by passing the --help flag to this script.
|
262 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
263 |
+
|
264 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
265 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
266 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
267 |
+
# let's parse it to get our arguments.
|
268 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
269 |
+
else:
|
270 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
271 |
+
|
272 |
+
# Detecting last checkpoint.
|
273 |
+
last_checkpoint = None
|
274 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
275 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
276 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
277 |
+
raise ValueError(
|
278 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
279 |
+
"Use --overwrite_output_dir to overcome."
|
280 |
+
)
|
281 |
+
elif last_checkpoint is not None:
|
282 |
+
logger.info(
|
283 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
284 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
285 |
+
)
|
286 |
+
|
287 |
+
# Setup logging
|
288 |
+
logging.basicConfig(
|
289 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
290 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
291 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
292 |
+
)
|
293 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
294 |
+
|
295 |
+
# Log on each process the small summary:
|
296 |
+
logger.warning(
|
297 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
298 |
+
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
299 |
+
)
|
300 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
301 |
+
if is_main_process(training_args.local_rank):
|
302 |
+
transformers.utils.logging.set_verbosity_info()
|
303 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
304 |
+
|
305 |
+
# Set seed before initializing model.
|
306 |
+
set_seed(training_args.seed)
|
307 |
+
|
308 |
+
# Get the datasets:
|
309 |
+
train_dataset = datasets.load_dataset(
|
310 |
+
"common_voice", data_args.dataset_config_name, split=data_args.train_split_name
|
311 |
+
)
|
312 |
+
eval_dataset = datasets.load_dataset("common_voice", data_args.dataset_config_name, split="test")
|
313 |
+
|
314 |
+
# Create and save tokenizer
|
315 |
+
#chars_to_ignore_regex = f'[{"".join(data_args.chars_to_ignore)}]'
|
316 |
+
chars_to_ignore_regex = '[\؛\—\_get\«\»\ـ\ـ\,\?\.\!\-\;\:\"\“\%\‘\”\�\#\،\☭,\؟\'ۚ\چ\ڨ\ﺃ\ھ\ﻻ\'ۖ]'
|
317 |
+
|
318 |
+
def remove_special_characters(batch):
|
319 |
+
batch["text"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " "
|
320 |
+
return batch
|
321 |
+
|
322 |
+
train_dataset = train_dataset.map(remove_special_characters, remove_columns=["sentence"])
|
323 |
+
eval_dataset = eval_dataset.map(remove_special_characters, remove_columns=["sentence"])
|
324 |
+
|
325 |
+
# For arabic diacritics
|
326 |
+
cleander = tn.Tnkeeh(remove_diacritics=True)
|
327 |
+
train_dataset = cleander.clean_hf_dataset(train_dataset, 'sentence')
|
328 |
+
eval_dataset = cleander.clean_hf_dataset(eval_dataset, 'sentence')
|
329 |
+
|
330 |
+
def extract_all_chars(batch):
|
331 |
+
all_text = " ".join(batch["text"])
|
332 |
+
vocab = list(set(all_text))
|
333 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
334 |
+
|
335 |
+
vocab_train = train_dataset.map(
|
336 |
+
extract_all_chars,
|
337 |
+
batched=True,
|
338 |
+
batch_size=-1,
|
339 |
+
keep_in_memory=True,
|
340 |
+
remove_columns=train_dataset.column_names,
|
341 |
+
)
|
342 |
+
vocab_test = train_dataset.map(
|
343 |
+
extract_all_chars,
|
344 |
+
batched=True,
|
345 |
+
batch_size=-1,
|
346 |
+
keep_in_memory=True,
|
347 |
+
remove_columns=eval_dataset.column_names,
|
348 |
+
)
|
349 |
+
|
350 |
+
vocab_list = list(set(vocab_train["vocab"][0]) | set(vocab_test["vocab"][0]))
|
351 |
+
vocab_dict = {v: k for k, v in enumerate(vocab_list)}
|
352 |
+
vocab_dict["|"] = vocab_dict[" "]
|
353 |
+
del vocab_dict[" "]
|
354 |
+
vocab_dict["[UNK]"] = len(vocab_dict)
|
355 |
+
vocab_dict["[PAD]"] = len(vocab_dict)
|
356 |
+
|
357 |
+
with open("vocab.json", "w") as vocab_file:
|
358 |
+
json.dump(vocab_dict, vocab_file)
|
359 |
+
|
360 |
+
# Load pretrained model and tokenizer
|
361 |
+
#
|
362 |
+
# Distributed training:
|
363 |
+
# The .from_pretrained methods guarantee that only one local process can concurrently
|
364 |
+
# download model & vocab.
|
365 |
+
tokenizer = Wav2Vec2CTCTokenizer(
|
366 |
+
"vocab.json",
|
367 |
+
unk_token="[UNK]",
|
368 |
+
pad_token="[PAD]",
|
369 |
+
word_delimiter_token="|",
|
370 |
+
)
|
371 |
+
feature_extractor = Wav2Vec2FeatureExtractor(
|
372 |
+
feature_size=1, sampling_rate=16_000, padding_value=0.0, do_normalize=True, return_attention_mask=True
|
373 |
+
)
|
374 |
+
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
|
375 |
+
model = Wav2Vec2ForCTC.from_pretrained(
|
376 |
+
model_args.model_name_or_path,
|
377 |
+
cache_dir=model_args.cache_dir,
|
378 |
+
activation_dropout=model_args.activation_dropout,
|
379 |
+
attention_dropout=model_args.attention_dropout,
|
380 |
+
hidden_dropout=model_args.hidden_dropout,
|
381 |
+
feat_proj_dropout=model_args.feat_proj_dropout,
|
382 |
+
mask_time_prob=model_args.mask_time_prob,
|
383 |
+
gradient_checkpointing=model_args.gradient_checkpointing,
|
384 |
+
layerdrop=model_args.layerdrop,
|
385 |
+
ctc_loss_reduction="mean",
|
386 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
387 |
+
vocab_size=len(processor.tokenizer),
|
388 |
+
)
|
389 |
+
|
390 |
+
if data_args.max_train_samples is not None:
|
391 |
+
train_dataset = train_dataset.select(range(data_args.max_train_samples))
|
392 |
+
|
393 |
+
if data_args.max_val_samples is not None:
|
394 |
+
eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
|
395 |
+
|
396 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
397 |
+
|
398 |
+
# Preprocessing the datasets.
|
399 |
+
# We need to read the aduio files as arrays and tokenize the targets.
|
400 |
+
def speech_file_to_array_fn(batch):
|
401 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
402 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
403 |
+
batch["sampling_rate"] = 16_000
|
404 |
+
batch["target_text"] = batch["text"]
|
405 |
+
return batch
|
406 |
+
|
407 |
+
train_dataset = train_dataset.map(
|
408 |
+
speech_file_to_array_fn,
|
409 |
+
remove_columns=train_dataset.column_names,
|
410 |
+
num_proc=data_args.preprocessing_num_workers,
|
411 |
+
)
|
412 |
+
eval_dataset = eval_dataset.map(
|
413 |
+
speech_file_to_array_fn,
|
414 |
+
remove_columns=eval_dataset.column_names,
|
415 |
+
num_proc=data_args.preprocessing_num_workers,
|
416 |
+
)
|
417 |
+
|
418 |
+
def prepare_dataset(batch):
|
419 |
+
# check that all files have the correct sampling rate
|
420 |
+
assert (
|
421 |
+
len(set(batch["sampling_rate"])) == 1
|
422 |
+
), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."
|
423 |
+
batch["input_values"] = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0]).input_values
|
424 |
+
# Setup the processor for targets
|
425 |
+
with processor.as_target_processor():
|
426 |
+
batch["labels"] = processor(batch["target_text"]).input_ids
|
427 |
+
return batch
|
428 |
+
|
429 |
+
train_dataset = train_dataset.map(
|
430 |
+
prepare_dataset,
|
431 |
+
remove_columns=train_dataset.column_names,
|
432 |
+
batch_size=training_args.per_device_train_batch_size,
|
433 |
+
batched=True,
|
434 |
+
num_proc=data_args.preprocessing_num_workers,
|
435 |
+
)
|
436 |
+
eval_dataset = eval_dataset.map(
|
437 |
+
prepare_dataset,
|
438 |
+
remove_columns=eval_dataset.column_names,
|
439 |
+
batch_size=training_args.per_device_train_batch_size,
|
440 |
+
batched=True,
|
441 |
+
num_proc=data_args.preprocessing_num_workers,
|
442 |
+
)
|
443 |
+
|
444 |
+
# Metric
|
445 |
+
wer_metric = datasets.load_metric("wer")
|
446 |
+
|
447 |
+
def compute_metrics(pred):
|
448 |
+
pred_logits = pred.predictions
|
449 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
450 |
+
|
451 |
+
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
|
452 |
+
|
453 |
+
pred_str = processor.batch_decode(pred_ids)
|
454 |
+
# we do not want to group tokens when computing the metrics
|
455 |
+
label_str = processor.batch_decode(pred.label_ids, group_tokens=False)
|
456 |
+
|
457 |
+
wer = wer_metric.compute(predictions=pred_str, references=label_str)
|
458 |
+
|
459 |
+
return {"wer": wer}
|
460 |
+
|
461 |
+
if model_args.freeze_feature_extractor:
|
462 |
+
model.freeze_feature_extractor()
|
463 |
+
|
464 |
+
# Data collator
|
465 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)
|
466 |
+
|
467 |
+
# Initialize our Trainer
|
468 |
+
trainer = CTCTrainer(
|
469 |
+
model=model,
|
470 |
+
data_collator=data_collator,
|
471 |
+
args=training_args,
|
472 |
+
compute_metrics=compute_metrics,
|
473 |
+
train_dataset=train_dataset if training_args.do_train else None,
|
474 |
+
eval_dataset=eval_dataset if training_args.do_eval else None,
|
475 |
+
tokenizer=processor.feature_extractor,
|
476 |
+
)
|
477 |
+
|
478 |
+
# Training
|
479 |
+
if training_args.do_train:
|
480 |
+
if last_checkpoint is not None:
|
481 |
+
checkpoint = last_checkpoint
|
482 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
483 |
+
checkpoint = model_args.model_name_or_path
|
484 |
+
else:
|
485 |
+
checkpoint = None
|
486 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
487 |
+
trainer.save_model()
|
488 |
+
|
489 |
+
# save the feature_extractor and the tokenizer
|
490 |
+
if is_main_process(training_args.local_rank):
|
491 |
+
processor.save_pretrained(training_args.output_dir)
|
492 |
+
|
493 |
+
metrics = train_result.metrics
|
494 |
+
max_train_samples = (
|
495 |
+
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
496 |
+
)
|
497 |
+
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
498 |
+
|
499 |
+
trainer.log_metrics("train", metrics)
|
500 |
+
trainer.save_metrics("train", metrics)
|
501 |
+
trainer.save_state()
|
502 |
+
|
503 |
+
# Evaluation
|
504 |
+
results = {}
|
505 |
+
if training_args.do_eval:
|
506 |
+
logger.info("*** Evaluate ***")
|
507 |
+
metrics = trainer.evaluate()
|
508 |
+
max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset)
|
509 |
+
metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))
|
510 |
+
|
511 |
+
trainer.log_metrics("eval", metrics)
|
512 |
+
trainer.save_metrics("eval", metrics)
|
513 |
+
|
514 |
+
return results
|
515 |
+
|
516 |
+
|
517 |
+
if __name__ == "__main__":
|
518 |
+
main()
|