|
--- |
|
language: |
|
- en |
|
tags: |
|
- llama |
|
--- |
|
|
|
# OpenChat: Less is More for Open-source Models |
|
|
|
OpenChat is a series of open-source language models fine-tuned on a diverse and high-quality dataset of multi-round conversations. With only ~6K GPT-4 conversations filtered from the ~90K ShareGPT conversations, OpenChat is designed to achieve high performance with limited data. |
|
|
|
**Generic models:** |
|
|
|
- OpenChat: based on LLaMA-13B (2048 context length) |
|
- **π 105.7%** of ChatGPT score on Vicuna GPT-4 evaluation |
|
- **π₯ 80.9%** Win-rate on AlpacaEval |
|
- **π€ Only used 6K data for finetuning!!!** |
|
- OpenChat-8192: based on LLaMA-13B (extended to 8192 context length) |
|
- **106.6%** of ChatGPT score on Vicuna GPT-4 evaluation |
|
- **79.5%** of ChatGPT score on Vicuna GPT-4 evaluation |
|
|
|
**Code models:** |
|
|
|
- OpenCoderPlus: based on StarCoderPlus (native 8192 context length) |
|
- **102.5%** of ChatGPT score on Vicuna GPT-4 evaluation |
|
- **78.7%** Win-rate on AlpacaEval |
|
|
|
*Note:* Please load the pretrained models using *bfloat16* |
|
|
|
## Code and Inference Server |
|
|
|
We provide the full source code, including an inference server compatible with the "ChatCompletions" API, in the [OpenChat](https://github.com/imoneoi/openchat) GitHub repository. |
|
|
|
## Web UI |
|
|
|
OpenChat also includes a web UI for a better user experience. See the GitHub repository for instructions. |
|
|
|
## Conversation Template |
|
|
|
The conversation template **involves concatenating tokens**. |
|
|
|
Besides base model vocabulary, an end-of-turn token `<|end_of_turn|>` is added, with id `eot_token_id`. |
|
|
|
```python |
|
# OpenChat |
|
[bos_token_id] + tokenize("Human: ") + tokenize(user_question) + [eot_token_id] + tokenize("Assistant: ") |
|
# OpenCoder |
|
tokenize("User:") + tokenize(user_question) + [eot_token_id] + tokenize("Assistant:") |
|
``` |
|
|
|
*Hint: In BPE, `tokenize(A) + tokenize(B)` does not always equals to `tokenize(A + B)`* |
|
|
|
Following is the code for generating the conversation templates: |
|
|
|
```python |
|
@dataclass |
|
class ModelConfig: |
|
# Prompt |
|
system: Optional[str] |
|
|
|
role_prefix: dict |
|
ai_role: str |
|
eot_token: str |
|
bos_token: Optional[str] = None |
|
|
|
# Get template |
|
def generate_conversation_template(self, tokenize_fn, tokenize_special_fn, message_list): |
|
tokens = [] |
|
masks = [] |
|
|
|
# begin of sentence (bos) |
|
if self.bos_token: |
|
t = tokenize_special_fn(self.bos_token) |
|
tokens.append(t) |
|
masks.append(False) |
|
|
|
# System |
|
if self.system: |
|
t = tokenize_fn(self.system) + [tokenize_special_fn(self.eot_token)] |
|
tokens.extend(t) |
|
masks.extend([False] * len(t)) |
|
|
|
# Messages |
|
for idx, message in enumerate(message_list): |
|
# Prefix |
|
t = tokenize_fn(self.role_prefix[message["from"]]) |
|
tokens.extend(t) |
|
masks.extend([False] * len(t)) |
|
|
|
# Message |
|
if "value" in message: |
|
t = tokenize_fn(message["value"]) + [tokenize_special_fn(self.eot_token)] |
|
tokens.extend(t) |
|
masks.extend([message["from"] == self.ai_role] * len(t)) |
|
else: |
|
assert idx == len(message_list) - 1, "Empty message for completion must be on the last." |
|
|
|
return tokens, masks |
|
|
|
|
|
MODEL_CONFIG_MAP = { |
|
# OpenChat / OpenChat-8192 |
|
"openchat": ModelConfig( |
|
# Prompt |
|
system=None, |
|
|
|
role_prefix={ |
|
"human": "Human: ", |
|
"gpt": "Assistant: " |
|
}, |
|
ai_role="gpt", |
|
eot_token="<|end_of_turn|>", |
|
bos_token="<s>", |
|
), |
|
|
|
# OpenCoder / OpenCoderPlus |
|
"opencoder": ModelConfig( |
|
# Prompt |
|
system=None, |
|
|
|
role_prefix={ |
|
"human": "User:", |
|
"gpt": "Assistant:" |
|
}, |
|
ai_role="gpt", |
|
eot_token="<|end_of_turn|>", |
|
bos_token=None, |
|
) |
|
} |
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_openchat__opencoderplus) |
|
|
|
| Metric | Value | |
|
|-----------------------|---------------------------| |
|
| Avg. | 43.17 | |
|
| ARC (25-shot) | 50.6 | |
|
| HellaSwag (10-shot) | 78.22 | |
|
| MMLU (5-shot) | 42.73 | |
|
| TruthfulQA (0-shot) | 50.72 | |
|
| Winogrande (5-shot) | 66.14 | |
|
| GSM8K (5-shot) | 4.62 | |
|
| DROP (3-shot) | 9.14 | |
|
|