opencoderplus / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
b3c20d7
|
raw
history blame
4.54 kB
---
language:
- en
tags:
- llama
---
# OpenChat: Less is More for Open-source Models
OpenChat is a series of open-source language models fine-tuned on a diverse and high-quality dataset of multi-round conversations. With only ~6K GPT-4 conversations filtered from the ~90K ShareGPT conversations, OpenChat is designed to achieve high performance with limited data.
**Generic models:**
- OpenChat: based on LLaMA-13B (2048 context length)
- **πŸš€ 105.7%** of ChatGPT score on Vicuna GPT-4 evaluation
- **πŸ”₯ 80.9%** Win-rate on AlpacaEval
- **πŸ€— Only used 6K data for finetuning!!!**
- OpenChat-8192: based on LLaMA-13B (extended to 8192 context length)
- **106.6%** of ChatGPT score on Vicuna GPT-4 evaluation
- **79.5%** of ChatGPT score on Vicuna GPT-4 evaluation
**Code models:**
- OpenCoderPlus: based on StarCoderPlus (native 8192 context length)
- **102.5%** of ChatGPT score on Vicuna GPT-4 evaluation
- **78.7%** Win-rate on AlpacaEval
*Note:* Please load the pretrained models using *bfloat16*
## Code and Inference Server
We provide the full source code, including an inference server compatible with the "ChatCompletions" API, in the [OpenChat](https://github.com/imoneoi/openchat) GitHub repository.
## Web UI
OpenChat also includes a web UI for a better user experience. See the GitHub repository for instructions.
## Conversation Template
The conversation template **involves concatenating tokens**.
Besides base model vocabulary, an end-of-turn token `<|end_of_turn|>` is added, with id `eot_token_id`.
```python
# OpenChat
[bos_token_id] + tokenize("Human: ") + tokenize(user_question) + [eot_token_id] + tokenize("Assistant: ")
# OpenCoder
tokenize("User:") + tokenize(user_question) + [eot_token_id] + tokenize("Assistant:")
```
*Hint: In BPE, `tokenize(A) + tokenize(B)` does not always equals to `tokenize(A + B)`*
Following is the code for generating the conversation templates:
```python
@dataclass
class ModelConfig:
# Prompt
system: Optional[str]
role_prefix: dict
ai_role: str
eot_token: str
bos_token: Optional[str] = None
# Get template
def generate_conversation_template(self, tokenize_fn, tokenize_special_fn, message_list):
tokens = []
masks = []
# begin of sentence (bos)
if self.bos_token:
t = tokenize_special_fn(self.bos_token)
tokens.append(t)
masks.append(False)
# System
if self.system:
t = tokenize_fn(self.system) + [tokenize_special_fn(self.eot_token)]
tokens.extend(t)
masks.extend([False] * len(t))
# Messages
for idx, message in enumerate(message_list):
# Prefix
t = tokenize_fn(self.role_prefix[message["from"]])
tokens.extend(t)
masks.extend([False] * len(t))
# Message
if "value" in message:
t = tokenize_fn(message["value"]) + [tokenize_special_fn(self.eot_token)]
tokens.extend(t)
masks.extend([message["from"] == self.ai_role] * len(t))
else:
assert idx == len(message_list) - 1, "Empty message for completion must be on the last."
return tokens, masks
MODEL_CONFIG_MAP = {
# OpenChat / OpenChat-8192
"openchat": ModelConfig(
# Prompt
system=None,
role_prefix={
"human": "Human: ",
"gpt": "Assistant: "
},
ai_role="gpt",
eot_token="<|end_of_turn|>",
bos_token="<s>",
),
# OpenCoder / OpenCoderPlus
"opencoder": ModelConfig(
# Prompt
system=None,
role_prefix={
"human": "User:",
"gpt": "Assistant:"
},
ai_role="gpt",
eot_token="<|end_of_turn|>",
bos_token=None,
)
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_openchat__opencoderplus)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 43.17 |
| ARC (25-shot) | 50.6 |
| HellaSwag (10-shot) | 78.22 |
| MMLU (5-shot) | 42.73 |
| TruthfulQA (0-shot) | 50.72 |
| Winogrande (5-shot) | 66.14 |
| GSM8K (5-shot) | 4.62 |
| DROP (3-shot) | 9.14 |