oguzhanolm's picture
update
ec65d64
metadata
language: tr
tags:
  - question-answering
  - loodos-bert-base
  - TQuAD
  - tr
datasets:
  - TQuAD
model-index:
  - name: loodos-bert-base-uncased-QA-fine-tuned
    results:
      - task:
          name: Question Answering
          type: question-answering
        dataset:
          name: TQuAD
          type: question-answering
          args: tr
        metrics:
          - name: Accuracy
            type: acc
            value: 0.91

Turkish SQuAD Model : Question Answering

I fine-tuned Loodos-Turkish-Bert-Model for Question-Answering problem with TQuAD dataset. Since the "loodos/bert-base-turkish-uncased" model gave the best results for the Turkish language in classification in the "Auto-tagging of Short Conversational Sentences using Transformer Methods" research we conducted with my teammates, I used this model because I thought that the success rate could be high in the question-answering.

Training Code

!python3 Turkish-QA.py \
  --model_type bert \
  --model_name_or_path loodos/bert-base-turkish-uncased
  --do_train \
  --do_eval \
  --train_file trainQ.json \
  --predict_file dev1.json \
  --per_gpu_train_batch_size 8 \
  --learning_rate 5e-5 \
  --num_train_epochs 6 \
  --max_seq_length 384 \
  --output_dir "./model"

Example Usage

Load Model

from transformers import AutoTokenizer, AutoModelForQuestionAnswering

tokenizer = AutoTokenizer.from_pretrained("oguzhanolm/loodos-bert-base-uncased-QA-fine-tuned")

model = AutoModelForQuestionAnswering.from_pretrained("oguzhanolm/loodos-bert-base-uncased-QA-fine-tuned")

nlp = pipeline('question-answering', model=model, tokenizer=tokenizer)

Apply the model

def ask(question,context):
  temp = nlp(question=question, context=context)
  start_idx = temp["start"]
  end_idx = temp["end"]
  return context[start_idx:end_idx]

istanbul="İstanbul, Türkiye'de Marmara Bölgesi'nde yer alan şehir ve Türkiye Cumhuriyeti Devletinin 81 ilinden biridir. Ülkenin nüfus bakımından en çok göç alan ve en kalabalık ilidir. Ekonomik, tarihî ve sosyo-kültürel açıdan önde gelen şehirlerden biridir. Şehir, iktisadi büyüklük açısından dünyada 34. sırada yer alır. Nüfuslarına göre şehirler listesinde belediye sınırları göz önüne alınarak yapılan sıralamaya göre Avrupa'da birinci, dünyada ise altıncı sırada yer almaktadır."

soru1 = "İstanbul büyüklük açısından kaçıncı sıradadır?"
print(ask(soru1,istanbul))

soru2 = "İstanbul nerede bulunur?"
print(ask(soru2,istanbul))