occiglot-7b-eu5 / README.md
malteos's picture
uploading model files
e2ef0ce verified
|
raw
history blame
7.85 kB
metadata
license: apache-2.0
language:
  - en
  - es
  - de
  - fr
  - it
pipeline_tag: text-generation

image/png

Occiglot-7B-EU5

A polyglot language model for the Occident.

Occiglot-7B-EU5 is a generative language model with 7B parameters supporting the top-5 EU languages (English, Spanish, French, German, and Italian) and trained by the German Research Center for Artificial Intelligence (DFKI). It is based on Mistral-7B-v0.1 and trained on 293B tokens of additional multilingual and code data with a block size of 8,192 tokens per sample. Note that the model is a general-purpose base model and was not instruction-fine-tuned nor optimized for chat or other applications.

This is the first release of an ongoing open research project for multilingual language models. If you want to train a model for your own language or are working on evaluations, please contact us. We are open for collaborations!

Model details

  • Continued-pretraining from: Mistral-7B-v0.1
  • Model type: Causal decoder-only transformer language model
  • Languages: English, Spanish, French, German, Italian, and code.
  • License: Apache 2.0
  • Compute resources: HessianAI's 42
  • Contributors: Manuel Brack, Patrick Schramowski, Pedro Ortiz, Malte Ostendorff, Fabio Barth, Georg Rehm, Kristian Kersting
  • Research labs: SAINT and SLT

How to use

You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility:

>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='occiglot/occiglot-7b-eu5')
>>> set_seed(42)
>>> generator("Hallo, Ich bin ein Sprachmodell,", max_length=40, num_return_sequences=1)
[{'generated_text': 'Hallo, Ich bin ein Sprachmodell, das dir bei der Übersetzung von Texten zwischen Deutsch und Englisch helfen kann. Wenn du mir einen Text in Deutsch'}]

Dataset

The training data was split amongst the 4 target languages (de, es, fr, it) and the continuous training in English and code.

The data distribution by language (estimated) is as follows:

  • English: ~13%
  • Code: ~5%
  • German: ~20%
  • Spanish: ~20%
  • French: ~20%
  • Italian: ~20%

The training data was prepared using lm-datasets. The exact data config will be released soon.

Training settings

  • Continual pre-training on 128 x A100-80GB on HessianAI's 42.
  • Framework: Determined
  • Precision: bf16
  • Optimizer: AdamW (lr: 0.00001, warmup_steps: 420)
  • Global batch size: 512 (with 8192 blocksize) split over 128 GPUs
  • Cosine Annealing with Warmup

Tokenizer

Tokenizer is unchanged from Mistral-7B-v0.1.

Evaluation

Preliminary evaluation results can be found below. Please note that the non-English results are based on partially machine-translated datasets and English prompts (Belebele and Okapi framework) and thus should be interpreted with caution, e.g., biased towards English model performance. Currently, we are working on more suitable benchmarks for Spanish, French, German, and Italian.

All languages

model_name arc_challenge hellaswag belebele mmlu avg
Mistral-7B-v0.1 0.5277 0.6825 0.7687 0.6287 0.6519
leo-mistral-hessianai-7b 0.4614 0.6423 0.6524 0.5440 0.5750
Occiglot-7B-EU5 0.5083 0.7191 0.6758 0.5432 0.6116

English

model_name arc_challenge hellaswag belebele mmlu avg
Mistral-7B-v0.1 0.6143 0.8344 0.8444 0.6351 0.7321
leo-mistral-hessianai-7b 0.5213 0.7779 0.7356 0.5508 0.6464
Occiglot-7B-EU5 0.5307 0.7900 0.7267 0.5467 0.6485

German

model_name arc_challenge hellaswag belebele mmlu avg
Mistral-7B-v0.1 0.4765 0.6101 0.7411 0.5274 0.5888
leo-mistral-hessianai-7b 0.4739 0.6818 0.6900 0.4887 0.5836
Occiglot-7B-EU5 0.4944 0.6667 0.6467 0.4833 0.5728

Spanish

model_name arc_challenge hellaswag belebele mmlu avg
Mistral-7B-v0.1 0.5256 0.6728 0.7478 0.5432 0.6224
leo-mistral-hessianai-7b 0.4436 0.5970 0.6178 0.4359 0.5236
Occiglot-7B-EU5 0.5085 0.7255 0.6778 0.4997 0.6029

French

model_name arc_challenge hellaswag belebele mmlu avg
Mistral-7B-v0.1 0.5244 0.6651 0.7744 0.5413 0.6263
leo-mistral-hessianai-7b 0.4354 0.5967 0.6222 0.4326 0.5217
Occiglot-7B-EU5 0.5064 0.7125 0.6756 0.4959 0.5976

Italian

model_name arc_challenge hellaswag belebele mmlu avg
Mistral-7B-v0.1 0.4979 0.6303 0.7356 0.5372 0.6002
leo-mistral-hessianai-7b 0.4328 0.5580 0.5967 0.4311 0.5047
Occiglot-7B-EU5 0.5013 0.7008 0.6522 0.4949 0.5873

Acknowledgements

The model training was supported by a compute grant at the 42 supercomputer which is a central component in the development of hessian AI, the AI Innovation Lab (HMWK & HMinD) and the AI Service Centers (BMBF). The curation of the training data is partially funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) through the project OpenGPT-X (project no. 68GX21007D).

License

Apache 2.0