LLaMA 1.9B Kazakh Instruct Model
This repository contains the LLaMA 1.9B model fine-tuned on a Kazakh language dataset for instruction-based tasks. The model is trained to provide helpful, relevant, and context-aware responses to various prompts in Kazakh. It is particularly effective in answering questions, providing explanations, and assisting in educational and professional contexts.
This model comes with an integrated chat template that structures conversations for proper input formatting. The Tokenizer
supports this feature, allowing for easier interaction by formatting messages before they are passed to the model.
The template follows this structure:
{%- if messages[0]['role'] == 'system' %}
{%- set offset = 1 %}
{%- else %}
{%- set offset = 0 %}
{%- endif %}
<|begin_of_text|>
{%- for message in messages %}
{{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' + message['content'] | trim + '<|eot_id|>' }}
{%- endfor %}
{{- '<|start_header_id|>' + 'көмекші' + '<|end_header_id|>\n\n' }}
Model Details
- Model Name: LLaMA 1.9B Kazakh Instruct
- Model ID:
nur-dev/llama-1.9B-kaz-instruct
- Parameters: 1.94 billion
- Architecture: Causal Language Model (LLaMA)
- Tokenizer: LLaMA tokenizer
- Language: Kazakh
Training Data
The model was fine-tuned on a dataset containing 22000 samples designed for instruction-based tasks. The dataset includes a diverse set of prompts and responses to help the model learn to handle a wide range of topics, from everyday queries to specialized questions.
How to Use
Using the Model Directly for Inference
Using the LlamaForCausalLM and AutoTokenizer classes to load a custom model, format a conversation, and generate a response using various generation parameters like top_k, top_p, and temperature.
from transformers import LlamaForCausalLM, AutoTokenizer
import torch
# Load the model and tokenizer
model_directory = "nur-dev/llama-1.9B-kaz-instruct"
model = LlamaForCausalLM.from_pretrained(model_directory)
tokenizer = AutoTokenizer.from_pretrained(model_directory)
# Set the model to evaluation mode and move to appropriate device
model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Example input in Kazakh
# Conversation history
conversation_history = [
{"role": "system", "content": "Сіз сұрақтарға жауап беріп, ақпарат ұсынатын сенімді AI көмекшісісіз."},
{"role": "пайдаланушы", "content": "Жасанды интеллект денсаулық сақтау саласына қандай өзгерістер енгізе алады?"}
]
# Format conversation using the chat template (custom method)
formatted_conversation = tokenizer.apply_chat_template(conversation_history, tokenize=False)
# Tokenize input
input_ids = tokenizer.encode(formatted_conversation, return_tensors="pt").to(device)
# Generate a response from the model
with torch.no_grad():
output = model.generate(
input_ids,
max_length=1000,
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=2,
early_stopping=True,
do_sample=True,
top_k=10,
top_p=0.5,
eos_token_id=tokenizer.eos_token_id,
temperature=1.3
)
# Decode and print the model's response
response = tokenizer.decode(output[0], skip_special_tokens=False)
print(response)
Using the Pipeline for Text Generation
Using the pipeline API, which abstracts much of the setup, allowing you to generate responses with less boilerplate. The assistant responds in a “pirate” style to a user query.
from transformers import pipeline
# Initialize the text generation pipeline
pipe = pipeline("text-generation", model="nur-dev/llama-1.9B-kaz-instruct")
# Define the conversation messages
messages = [
{"role": "system", "content": "Сіз сұрақтарға жауап беріп, ақпарат ұсынатын сенімді AI көмекшісісіз."},
{"role": "пайдаланушы", "content": "Жасанды интеллект денсаулық сақтау саласына қандай өзгерістер енгізе алады?"}
]
response = pipe(messages, max_new_tokens=128)[0]['generated_text']
print(response)
@misc {nurgali_kadyrbek_2024, author = { {NURGALI Kadyrbek} }, title = { llama-1.9B-kaz-instruct (Revision 4059a4e) }, year = 2024, url = { https://huggingface.co/nur-dev/llama-1.9B-kaz-instruct }, doi = { 10.57967/hf/3114 }, publisher = { Hugging Face } }
- Downloads last month
- 399
Model tree for nur-dev/llama-1.9B-kaz-instruct
Base model
nur-dev/llama-1.9B-kaz