|
--- |
|
license: bigscience-openrail-m |
|
library_name: transformers |
|
tags: |
|
- code |
|
- gpt_bigcode |
|
datasets: |
|
- nuprl/MultiPL-T |
|
metrics: |
|
- code_eval |
|
model-index: |
|
- name: MultiPLCoder-1b-OCaml |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: MultiPL-HumanEval (Lua) |
|
type: nuprl/MultiPL-E |
|
metrics: |
|
- type: pass@1 |
|
value: 0.173 |
|
name: pass@1 |
|
verified: true |
|
- type: pass@1 |
|
value: 0.113 |
|
name: pass@1 |
|
verified: true |
|
- type: pass@1 |
|
value: 0.097 |
|
name: pass@1 |
|
verified: true |
|
--- |
|
# MultiPLCoder-1b |
|
|
|
1 billion parameter version of MultiPLCoder, a set of StarCoder-based models finetuned on the [MultiPL-T dataset](https://huggingface.co/datasets/nuprl/MultiPL-T). |
|
These models are state-of-the-art at low-resource languages, such as: Lua, Racket, and OCaml. |
|
|
|
This 1 billion parameter model is small enough such that it can generate code on the CPU. |
|
For a larger, more capable model, check out [MultiPLCoder-15b](https://huggingface.co/nuprl/MultiPLCoder-15b). |
|
|
|
|
|
## Language Revision Index |
|
|
|
This is the revision index for the best-performing models for their respective langauge. |
|
|
|
| Langauge | Revision ID | Epoch | |
|
| ------------- | ----------- | ----- | |
|
| Lua | `7e96d931547e342ad0661cdd91236fe4ccf52545` | 3 | |
|
| Racket | `2cdc541bee1db4da80c0b43384b0d6a0cacca5b2` | 5 | |
|
| OCaml | `e8a24f9e2149cbda8c3cca264a53c2b361b7a031` | 6 | |
|
|
|
## Usage |
|
|
|
To utilize one of the models in this repository, you must first select a commit revision for that model from the table above. |
|
For example, to use the Lua model: |
|
```py |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
tokenizer = AutoTokenizer.from_pretrained("nuprl/MultiPLCoder-1b") |
|
lua_revision="7e96d931547e342ad0661cdd91236fe4ccf52545" |
|
model = AutoModelForCausalLM.from_pretrained("nuprl/MultiPLCoder-1b", revision=lua_revision) |
|
``` |
|
|
|
Note that the model's default configuration does not enable caching, therefore you must specify to use the cache on generation. |
|
```py |
|
toks = tokenizer.encode("-- Hello World", return_tensors="pt") |
|
out = model.generate(toks, use_cache=True, do_sample=True, temperature=0.2, top_p=0.95, max_length=50) |
|
print(tokenizer.decode(out[0], skip_special_tokens=True)) |
|
``` |
|
``` |
|
-- Hello World! |
|
-- :param name: The name of the person to say hello to |
|
-- :return: A greeting |
|
local function say_hello(name) |
|
return "Hello ".. name |
|
end |
|
``` |