Scandinavian Education Classifier Snowflake
!!! We recomment using our bert-based model instead for production
Trained using code from: [CosmoPedia)[]https://github.com/huggingface/cosmopedia/tree/main/classification], and the nb-bert-base as starting point. The data used in classification is from GlotCC and have been annotated using Gemini 1.5 Flash.
The following command where used for training:
python train_edu_bert.py --base_model_name="NbAiLab/nb-bert-base" --dataset_name="north/scandinavian-educational-annotations" --target_column="score" --checkpoint_dir="/home/pere/checkpoints/scandinavian_bert/"
Classification Report
Class |
Precision |
Recall |
F1-Score |
Support |
0 |
0.76 |
0.64 |
0.70 |
18274 |
1 |
0.63 |
0.76 |
0.69 |
23348 |
2 |
0.48 |
0.40 |
0.43 |
6621 |
3 |
0.57 |
0.28 |
0.38 |
1314 |
4 |
0.56 |
0.06 |
0.12 |
433 |
5 |
0.00 |
0.00 |
0.00 |
10 |
Metric |
Value |
Accuracy |
0.65 |
Macro Avg |
|
- Precision |
0.50 |
- Recall |
0.36 |
- F1-Score |
0.38 |
Weighted Avg |
|
- Precision |
0.65 |
- Recall |
0.65 |
- F1-Score |
0.64 |
Total Support |
50000 |
Confusion Matrix
|
Class 0 |
Class 1 |
Class 2 |
Class 3 |
Class 4 |
Class 5 |
Class 0 |
11725 |
6460 |
88 |
1 |
0 |
0 |
Class 1 |
3598 |
17758 |
1978 |
14 |
0 |
0 |
Class 2 |
128 |
3733 |
2618 |
142 |
0 |
0 |
Class 3 |
6 |
272 |
645 |
369 |
22 |
0 |
Class 4 |
2 |
121 |
161 |
121 |
28 |
0 |
Class 5 |
0 |
2 |
8 |
0 |
0 |
0 |
Evaluation Metrics
Metric |
Value |
Eval Loss |
0.3311704695224762 |
Eval Precision |
0.49857140934204414 |
Eval Recall |
0.35718277242555724 |
Eval F1 Macro |
0.38442290605864393 |
Eval Accuracy |
0.64996 |
Eval Runtime |
86.1773 |
Eval Samples Per Second |
580.199 |
Eval Steps Per Second |
4.537 |
Epoch |
19.91 |
Training Metrics
Metric |
Value |
Loss |
0.318 |
Grad Norm |
0.6617229580879211 |
Learning Rate |
5.119453924914675e-07 |
Epoch |
19.97 |
Training Runtime
Metric |
Value |
Train Runtime |
19583.1034 |
Train Samples Per Second |
459.58 |
Train Steps Per Second |
1.795 |
Train Loss |
0.341879387194793 |
Epoch |
20.0 |