modeltest1 / README.md
noeloco's picture
End of training
f4819f9 verified
|
raw
history blame
3.57 kB
metadata
license: llama2
library_name: peft
tags:
  - axolotl
  - generated_from_trainer
base_model: codellama/CodeLlama-7b-hf
model-index:
  - name: modeltest1
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: codellama/CodeLlama-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: CodeLlamaTokenizer
is_llama_derived_model: true

hub_model_id: noeloco/modeltest1

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: /tmp/fizzbuzz-ft/datasets
    data_files: /tmp/fizzbuzz-ft/datasets/training-set-alpaca.json
    type: alpaca
    ds_type: json

hf_use_auth_token: true
push_dataset_to_hub: noeloco
val_set_size: 0.05
output_dir: ./lora-out
chat_template: chatml


sequence_len: 2048
sample_packing: false
pad_to_sequence_len: true

adapter: qlora
lora_model_dir:
lora_r: 16
lora_alpha: 8
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: runpod1
wandb_entity:
wandb_watch:
wandb_name: 
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug: true
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

modeltest1

This model is a fine-tuned version of codellama/CodeLlama-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0295

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
2.0177 0.01 1 2.5549
0.603 0.26 18 0.8667
0.3026 0.51 36 0.2340
0.0977 0.77 54 0.1274
0.1101 1.03 72 0.1098
0.0503 1.29 90 0.0469
0.0753 1.54 108 0.0516
0.2285 1.8 126 0.0192
0.0647 2.06 144 0.0386
0.0494 2.31 162 0.0334
0.0552 2.57 180 0.0293
0.0888 2.83 198 0.0295

Framework versions

  • PEFT 0.10.1.dev0
  • Transformers 4.40.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0