File size: 3,501 Bytes
a166ce8
fa33dfd
 
 
 
 
 
 
 
 
a166ce8
fa33dfd
 
 
 
 
 
 
f4819f9
fa33dfd
 
 
 
 
 
f4819f9
 
 
 
fa33dfd
 
 
452a9ed
fa33dfd
 
 
7822d67
 
fa33dfd
 
7822d67
f4819f9
fa33dfd
 
7822d67
fa33dfd
 
452a9ed
fa33dfd
f4819f9
 
fa33dfd
 
 
 
 
 
 
 
 
 
f4819f9
fa33dfd
f4819f9
 
fa33dfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4819f9
fa33dfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452a9ed
fa33dfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4819f9
fa33dfd
 
 
 
 
452a9ed
 
 
 
 
 
 
 
 
 
 
 
fa33dfd
 
 
 
f4819f9
 
 
 
fa33dfd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
license: llama2
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: codellama/CodeLlama-7b-hf
model-index:
- name: modeltest1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: codellama/CodeLlama-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: CodeLlamaTokenizer
is_llama_derived_model: true

hub_model_id: noeloco/modeltest1

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: noeloco/fizzbuzz-sft
    type: alpaca
    ds_type: json

hf_use_auth_token: true
push_dataset_to_hub: noeloco
val_set_size: 0.05
output_dir: ./lora-out
chat_template: chatml


sequence_len: 2048
sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 8
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: runpod1
wandb_entity:
wandb_watch:
wandb_name: 
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug: true
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

```

</details><br>

# modeltest1

This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0210

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0829        | 0.01  | 1    | 2.5224          |
| 0.6045        | 0.26  | 18   | 0.8178          |
| 0.3357        | 0.51  | 36   | 0.2672          |
| 0.1057        | 0.77  | 54   | 0.1210          |
| 0.1046        | 1.03  | 72   | 0.0818          |
| 0.052         | 1.29  | 90   | 0.0458          |
| 0.0641        | 1.54  | 108  | 0.0363          |
| 0.1952        | 1.8   | 126  | 0.0213          |
| 0.0573        | 2.06  | 144  | 0.0362          |
| 0.0346        | 2.31  | 162  | 0.0284          |
| 0.0513        | 2.57  | 180  | 0.0221          |
| 0.0865        | 2.83  | 198  | 0.0210          |


### Framework versions

- PEFT 0.10.1.dev0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0