End of training
Browse files- README.md +158 -1
- adapter_model.bin +3 -0
README.md
CHANGED
@@ -1,3 +1,160 @@
|
|
1 |
---
|
2 |
-
license:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: llama2
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- axolotl
|
6 |
+
- generated_from_trainer
|
7 |
+
base_model: codellama/CodeLlama-7b-hf
|
8 |
+
model-index:
|
9 |
+
- name: modeltest1
|
10 |
+
results: []
|
11 |
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
17 |
+
<details><summary>See axolotl config</summary>
|
18 |
+
|
19 |
+
axolotl version: `0.3.0`
|
20 |
+
```yaml
|
21 |
+
base_model: codellama/CodeLlama-7b-hf
|
22 |
+
model_type: LlamaForCausalLM
|
23 |
+
tokenizer_type: CodeLlamaTokenizer
|
24 |
+
is_llama_derived_model: true
|
25 |
+
|
26 |
+
load_in_8bit: true
|
27 |
+
load_in_4bit: false
|
28 |
+
strict: false
|
29 |
+
|
30 |
+
datasets:
|
31 |
+
- path: /tmp/fizzbuzz-ft/
|
32 |
+
data_files: fizzbuzz-output.json
|
33 |
+
type: alpaca
|
34 |
+
ds_type: json
|
35 |
+
|
36 |
+
dataset_prepared_path: noeloco/cameltest
|
37 |
+
val_set_size: 0.05
|
38 |
+
output_dir: ./lora-out
|
39 |
+
|
40 |
+
hub_model_id: noeloco/modeltest1
|
41 |
+
hf_use_auth_token: true
|
42 |
+
|
43 |
+
sequence_len: 2048
|
44 |
+
sample_packing: true
|
45 |
+
eval_sample_packing: False
|
46 |
+
pad_to_sequence_len: true
|
47 |
+
|
48 |
+
adapter: lora
|
49 |
+
lora_model_dir:
|
50 |
+
lora_r: 8
|
51 |
+
lora_alpha: 16
|
52 |
+
lora_dropout: 0.05
|
53 |
+
lora_target_linear: true
|
54 |
+
lora_fan_in_fan_out:
|
55 |
+
|
56 |
+
wandb_project: runpod1
|
57 |
+
wandb_entity:
|
58 |
+
wandb_watch:
|
59 |
+
wandb_name:
|
60 |
+
wandb_log_model:
|
61 |
+
|
62 |
+
gradient_accumulation_steps: 4
|
63 |
+
micro_batch_size: 2
|
64 |
+
num_epochs: 1
|
65 |
+
optimizer: adamw_bnb_8bit
|
66 |
+
lr_scheduler: cosine
|
67 |
+
learning_rate: 0.0002
|
68 |
+
|
69 |
+
train_on_inputs: false
|
70 |
+
group_by_length: false
|
71 |
+
bf16: true
|
72 |
+
fp16: false
|
73 |
+
tf32: false
|
74 |
+
|
75 |
+
gradient_checkpointing: true
|
76 |
+
early_stopping_patience:
|
77 |
+
resume_from_checkpoint:
|
78 |
+
local_rank:
|
79 |
+
logging_steps: 1
|
80 |
+
xformers_attention:
|
81 |
+
flash_attention: true
|
82 |
+
|
83 |
+
warmup_steps: 10
|
84 |
+
evals_per_epoch: 4
|
85 |
+
saves_per_epoch: 1
|
86 |
+
debug: true
|
87 |
+
deepspeed:
|
88 |
+
weight_decay: 0.0
|
89 |
+
fsdp:
|
90 |
+
fsdp_config:
|
91 |
+
special_tokens:
|
92 |
+
bos_token: "<s>"
|
93 |
+
eos_token: "</s>"
|
94 |
+
unk_token: "<unk>"
|
95 |
+
|
96 |
+
```
|
97 |
+
|
98 |
+
</details><br>
|
99 |
+
|
100 |
+
# modeltest1
|
101 |
+
|
102 |
+
This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the None dataset.
|
103 |
+
It achieves the following results on the evaluation set:
|
104 |
+
- Loss: 2.7345
|
105 |
+
|
106 |
+
## Model description
|
107 |
+
|
108 |
+
More information needed
|
109 |
+
|
110 |
+
## Intended uses & limitations
|
111 |
+
|
112 |
+
More information needed
|
113 |
+
|
114 |
+
## Training and evaluation data
|
115 |
+
|
116 |
+
More information needed
|
117 |
+
|
118 |
+
## Training procedure
|
119 |
+
|
120 |
+
|
121 |
+
The following `bitsandbytes` quantization config was used during training:
|
122 |
+
- quant_method: bitsandbytes
|
123 |
+
- load_in_8bit: True
|
124 |
+
- load_in_4bit: False
|
125 |
+
- llm_int8_threshold: 6.0
|
126 |
+
- llm_int8_skip_modules: None
|
127 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
128 |
+
- llm_int8_has_fp16_weight: False
|
129 |
+
- bnb_4bit_quant_type: fp4
|
130 |
+
- bnb_4bit_use_double_quant: False
|
131 |
+
- bnb_4bit_compute_dtype: float32
|
132 |
+
|
133 |
+
### Training hyperparameters
|
134 |
+
|
135 |
+
The following hyperparameters were used during training:
|
136 |
+
- learning_rate: 0.0002
|
137 |
+
- train_batch_size: 2
|
138 |
+
- eval_batch_size: 2
|
139 |
+
- seed: 42
|
140 |
+
- gradient_accumulation_steps: 4
|
141 |
+
- total_train_batch_size: 8
|
142 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
143 |
+
- lr_scheduler_type: cosine
|
144 |
+
- lr_scheduler_warmup_steps: 10
|
145 |
+
- num_epochs: 1
|
146 |
+
|
147 |
+
### Training results
|
148 |
+
|
149 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
150 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
151 |
+
| 1.7285 | 1.0 | 1 | 2.7345 |
|
152 |
+
|
153 |
+
|
154 |
+
### Framework versions
|
155 |
+
|
156 |
+
- PEFT 0.7.0
|
157 |
+
- Transformers 4.37.0.dev0
|
158 |
+
- Pytorch 2.0.1+cu118
|
159 |
+
- Datasets 2.16.1
|
160 |
+
- Tokenizers 0.15.0
|
adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e21d98e65be8ce1f9ac99ceb19b3bd3aa73dd696cc7f7c22965f55c745f9b567
|
3 |
+
size 80114765
|