Edit model card

NG_word_detect

This model is a fine-tuned version of openai/whisper-large-v3 on the NG_word_detect dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2154
  • Wer: 40.9602

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3435 0.1524 25 0.3604 69.1673
0.2776 0.3049 50 0.2718 63.0158
0.2031 0.4573 75 0.2177 55.4389
0.171 0.6098 100 0.1879 52.3631
0.1363 0.7622 125 0.1721 49.8875
0.1587 0.9146 150 0.1654 48.9872
0.0824 1.0671 175 0.1641 47.2618
0.0933 1.2195 200 0.1659 48.3121
0.1426 1.3720 225 0.1572 46.5116
0.1059 1.5244 250 0.1528 45.6864
0.095 1.6768 275 0.1540 46.0615
0.0855 1.8293 300 0.1528 44.1110
0.1124 1.9817 325 0.1525 45.1613
0.052 2.1341 350 0.1559 45.5364
0.0539 2.2866 375 0.1575 45.0863
0.0718 2.4390 400 0.1667 45.1613
0.0451 2.5915 425 0.1701 46.0615
0.0421 2.7439 450 0.1582 44.4861
0.0508 2.8963 475 0.1604 44.4111
0.0204 3.0488 500 0.1601 42.7607
0.0257 3.2012 525 0.1744 43.9610
0.0175 3.3537 550 0.1728 45.7614
0.0219 3.5061 575 0.1766 45.2363
0.0216 3.6585 600 0.1800 45.9115
0.0173 3.8110 625 0.1692 44.5611
0.0418 3.9634 650 0.1672 43.7359
0.0076 4.1159 675 0.1777 43.6609
0.0088 4.2683 700 0.1805 42.4606
0.0097 4.4207 725 0.1774 43.0608
0.0097 4.5732 750 0.1802 44.7112
0.0117 4.7256 775 0.1783 43.5859
0.0101 4.8780 800 0.1851 42.9107
0.0069 5.0305 825 0.1807 41.9355
0.006 5.1829 850 0.1865 42.2356
0.0029 5.3354 875 0.1878 42.6107
0.0079 5.4878 900 0.1994 44.1110
0.0118 5.6402 925 0.1889 43.9610
0.0125 5.7927 950 0.1905 44.6362
0.0115 5.9451 975 0.1846 44.0360
0.0054 6.0976 1000 0.1845 43.8110
0.0036 6.25 1025 0.1922 42.7607
0.0088 6.4024 1050 0.1937 42.8357
0.0043 6.5549 1075 0.1914 42.9107
0.0016 6.7073 1100 0.1958 42.6107
0.0103 6.8598 1125 0.1877 41.6354
0.0027 7.0122 1150 0.1873 41.7104
0.0018 7.1646 1175 0.1890 41.7854
0.0012 7.3171 1200 0.1918 41.7104
0.0054 7.4695 1225 0.1949 41.0353
0.0014 7.6220 1250 0.1965 41.6354
0.0009 7.7744 1275 0.2024 41.7104
0.0011 7.9268 1300 0.1970 41.1853
0.0007 8.0793 1325 0.1995 41.1103
0.0006 8.2317 1350 0.2012 41.4854
0.0006 8.3841 1375 0.2075 41.7854
0.0006 8.5366 1400 0.2077 41.5604
0.0034 8.6890 1425 0.2092 41.7854
0.0006 8.8415 1450 0.2079 41.2603
0.0023 8.9939 1475 0.2080 41.0353
0.0004 9.1463 1500 0.2095 41.0353
0.0021 9.2988 1525 0.2096 41.4854
0.0004 9.4512 1550 0.2095 41.3353
0.0015 9.6037 1575 0.2102 41.0353
0.0012 9.7561 1600 0.2106 41.1853
0.0006 9.9085 1625 0.2110 41.2603
0.0004 10.0610 1650 0.2111 41.1103
0.0003 10.2134 1675 0.2122 41.1853
0.0003 10.3659 1700 0.2122 40.9602
0.0006 10.5183 1725 0.2125 40.8102
0.0004 10.6707 1750 0.2131 40.8852
0.0004 10.8232 1775 0.2137 41.0353
0.0003 10.9756 1800 0.2141 40.9602
0.0003 11.1280 1825 0.2144 40.9602
0.0003 11.2805 1850 0.2147 40.9602
0.0021 11.4329 1875 0.2149 40.9602
0.0011 11.5854 1900 0.2152 40.9602
0.0003 11.7378 1925 0.2153 40.9602
0.0003 11.8902 1950 0.2153 40.9602
0.0024 12.0427 1975 0.2153 40.9602
0.0003 12.1951 2000 0.2154 40.9602

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
54
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nkkbr/whisper-NG_word_detect

Finetuned
(294)
this model

Evaluation results