|
--- |
|
base_model: |
|
- tokyotech-llm/Swallow-70b-instruct-hf |
|
- nitky/Swallow-70b-NVE-RP |
|
tags: |
|
- mergekit |
|
- merge |
|
language: |
|
- en |
|
- ja |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
license: llama2 |
|
model_type: llama |
|
--- |
|
# Swallow-70b-RP |
|
|
|
**Important Notice:** |
|
|
|
For personal and academic use only. |
|
|
|
## Description |
|
|
|
This model is suitable for role-playing and storytelling, but it's not a great model for multi-turn chat. |
|
|
|
This was created for personal and academic use only. This merge model uses only fine-tune models of Llama2, but some of the models used include those whose licenses for commercial use are unclear. |
|
|
|
If there is a license problem, the rights holder should contact me directly. No license changes will be made due to contact from others. |
|
|
|
## Test environment |
|
|
|
This model was tested using [text-generation-webui](https://github.com/oobabooga/text-generation-webui/tree/main). I use preset `simple-1` and `Null preset` for Generation. |
|
|
|
### Recommendation |
|
|
|
Use `simple-1` settings: |
|
- temperature: 0.7 |
|
- top_p: 0.9 |
|
- repetition_penalty: 1.15 |
|
- top_k: 20 |
|
|
|
### Tested `temperature` Range |
|
|
|
- temperature: 0.3 - 1.0 |
|
|
|
### Tested `repetition_penalty` Range |
|
|
|
- repetition_penalty: 1.0 - 1.15 |
|
|
|
## Prompt template |
|
|
|
### Swallow Style (Alpaca format) |
|
|
|
``` |
|
以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。リクエストを適切に完了するための回答を記述してください。 |
|
|
|
### 指示: |
|
{instruction} |
|
|
|
### 応答: |
|
|
|
``` |
|
|
|
Although not fully tested, [Doctor-Shotgun/lzlv-limarpv3-l2-70b](Doctor-Shotgun/lzlv-limarpv3-l2-70b) and [alac/Waxwing-Storytelling-70B-LoRA](https://huggingface.co/alac/Waxwing-Storytelling-70B-LoRA) prompt styles are also available. |
|
|
|
## Use the instruct model |
|
|
|
``` |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_name = "nitky/Swallow-70b-RP" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto", load_in_4bit = True) |
|
|
|
|
|
PROMPT_DICT = { |
|
"prompt_input": ( |
|
"以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。" |
|
"リクエストを適切に完了するための回答を記述してください。\n\n" |
|
"### 指示:\n{instruction}\n\n### 入力:\n{input}\n\n### 応答:" |
|
|
|
), |
|
"prompt_no_input": ( |
|
"以下に、あるタスクを説明する指示があります。" |
|
"リクエストを適切に完了するための回答を記述してください。\n\n" |
|
"### 指示:\n{instruction}\n\n### 応答:" |
|
), |
|
} |
|
|
|
def create_prompt(instruction, input=None): |
|
""" |
|
Generates a prompt based on the given instruction and an optional input. |
|
If input is provided, it uses the 'prompt_input' template from PROMPT_DICT. |
|
If no input is provided, it uses the 'prompt_no_input' template. |
|
|
|
Args: |
|
instruction (str): The instruction describing the task. |
|
input (str, optional): Additional input providing context for the task. Default is None. |
|
|
|
Returns: |
|
str: The generated prompt. |
|
""" |
|
if input: |
|
# Use the 'prompt_input' template when additional input is provided |
|
return PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input) |
|
else: |
|
# Use the 'prompt_no_input' template when no additional input is provided |
|
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction) |
|
|
|
# Example usage |
|
instruction_example = "以下のトピックに関する詳細な情報を提供してください。" |
|
input_example = "東京工業大学の主なキャンパスについて教えてください" |
|
prompt = create_prompt(instruction_example, input_example) |
|
|
|
input_ids = tokenizer.encode( |
|
prompt, |
|
add_special_tokens=False, |
|
return_tensors="pt" |
|
) |
|
|
|
tokens = model.generate( |
|
input_ids.to(device=model.device), |
|
max_new_tokens=200, |
|
temperature=0.7, |
|
top_p=0.9, |
|
repetition_penalty=1.15, |
|
top_k=20, |
|
do_sample=True, |
|
) |
|
|
|
out = tokenizer.decode(tokens[0], skip_special_tokens=True) |
|
print(out) |
|
|
|
``` |
|
|
|
## Merge Details |
|
### Merge Method |
|
|
|
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) and the SLERP merge method using [tokyotech-llm/Swallow-70b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf) as a base. |
|
|
|
### Models Merged |
|
|
|
The following models were included in the merge: |
|
* [GOAT-AI/GOAT-70B-Storytelling](https://huggingface.co/GOAT-AI/GOAT-70B-Storytelling) |
|
* [dreamgen/opus-v0.5-70b](https://huggingface.co/dreamgen/opus-v0.5-70b) |
|
* [Doctor-Shotgun/lzlv-limarpv3-l2-70b](Doctor-Shotgun/lzlv-limarpv3-l2-70b) |
|
* [LoRA] [alac/Waxwing-Storytelling-70B-LoRA](https://huggingface.co/alac/Waxwing-Storytelling-70B-LoRA) |
|
|
|
### Configuration |
|
|
|
The command example: |
|
|
|
```bash |
|
# please change the path and options according to your environment |
|
mergekit-mega --cuda Swallow-70b-RP.yml ~/text-generation-webui/models |
|
``` |
|
|
|
The following YAML configuration was used to produce this model: |
|
|
|
```yaml |
|
models: |
|
- model: tokyotech-llm/Swallow-70b-instruct-hf |
|
# no parameters necessary for base model |
|
- model: nitky/Swallow-70b-NVE-RP |
|
parameters: |
|
density: 1 |
|
weight: |
|
- filter: mlp |
|
value: 0.1 |
|
- filter: self_attn |
|
value: 0.4 |
|
- value: 0 # fallback for rest of tensors. |
|
merge_method: dare_ties |
|
base_model: tokyotech-llm/Swallow-70b-instruct-hf |
|
dtype: bfloat16 |
|
tokenizer_source: union |
|
name: Swallow-70b-RP-base |
|
--- |
|
models: |
|
- model: tokyotech-llm/Swallow-70b-instruct-hf |
|
# no parameters necessary for base model |
|
- model: nitky/Swallow-70b-NVE-RP |
|
parameters: |
|
density: 1 |
|
weight: |
|
- filter: mlp |
|
value: [0.4, 0.1, 0.4, 0.1, 0.4, 0.1, 0.4, 0.1, 0.1] |
|
- filter: self_attn |
|
value: [0.4, 0.4, 0.1, 0.4, 0.1, 0.4, 0.1, 0.4, 0.4] |
|
- value: 0 # fallback for rest of tensors. |
|
merge_method: dare_ties |
|
base_model: tokyotech-llm/Swallow-70b-instruct-hf |
|
dtype: bfloat16 |
|
tokenizer_source: union |
|
name: Swallow-70b-RP-flavor |
|
--- |
|
slices: |
|
- sources: |
|
- model: Swallow-70b-RP-base |
|
layer_range: [0, 80] |
|
- model: Swallow-70b-RP-flavor |
|
layer_range: [0, 80] |
|
merge_method: slerp |
|
base_model: Swallow-70b-RP-base |
|
parameters: |
|
t: # model stabilization |
|
- filter: self_attn |
|
value: [0, 0.5, 0.3, 0.7, 1] |
|
- filter: mlp |
|
value: [1, 0.5, 0.7, 0.3, 0] |
|
- value: 0.5 # fallback for rest of tensors |
|
dtype: bfloat16 |
|
name: Swallow-70b-RP |
|
|
|
``` |