Edit model card

Mistral-7B-Instruct-v0.3-advisegpt-v0.2

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0780
  • Bleu: {'bleu': 0.9576887647563643, 'precisions': [0.9773669728326163, 0.9618578951912286, 0.9507543139197927, 0.9415539534224628], 'brevity_penalty': 0.9998937877305732, 'length_ratio': 0.9998937933706971, 'translation_length': 696681, 'reference_length': 696755}
  • Rouge: {'rouge1': 0.9756788083049949, 'rouge2': 0.9583995226740446, 'rougeL': 0.9744286269286386, 'rougeLsum': 0.9754176834545093}
  • Exact Match: {'exact_match': 0.0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 3
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 10
  • total_train_batch_size: 30
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Bleu Exact Match Validation Loss Rouge
0.0674 1.0 1272 {'bleu': 0.9527886605929342, 'brevity_penalty': 1.0, 'length_ratio': 1.0000143520618172, 'precisions': [0.9750579097383083, 0.9573526809414263, 0.9448030782898647, 0.9344211337471139], 'reference_length': 696764, 'translation_length': 696774} {'exact_match': 0.0} 0.0879 {'rouge1': 0.9733658563180658, 'rouge2': 0.9537375602435975, 'rougeL': 0.9714782202593812, 'rougeLsum': 0.97295717219818}
0.0515 2.0 2544 {'bleu': 0.9576841610471547, 'brevity_penalty': 0.9998937891025745, 'length_ratio': 0.9998937947425527, 'precisions': [0.9774131966871923, 0.9617936398993365, 0.9507289899724213, 0.9415792951573699], 'reference_length': 696764, 'translation_length': 696690} {'exact_match': 0.0} 0.0783 {'rouge1': 0.9757072387880681, 'rouge2': 0.9584139466483359, 'rougeL': 0.9743902945474832, 'rougeLsum': 0.9754213243935133}
0.0574 2.9993 2997 {'bleu': 0.9566916740680499, 'brevity_penalty': 1.0, 'length_ratio': 1.00018514398892, 'precisions': [0.9768282813208511, 0.960876488636805, 0.9494536267704137, 0.9400012431679968], 'reference_length': 696755, 'translation_length': 696884} {'exact_match': 0.0} 0.0809 {'rouge1': 0.9754024081831265, 'rouge2': 0.9579286248562431, 'rougeL': 0.9741313460430334, 'rougeLsum': 0.9751613463738352}
0.0482 3.9993 3996 0.0808 {'bleu': 0.9574684676357755, 'precisions': [0.9771731036056137, 0.9615197629595535, 0.950377700460969, 0.9411784261633503], 'brevity_penalty': 1.0, 'length_ratio': 1.0002669517979779, 'translation_length': 696941, 'reference_length': 696755} {'rouge1': 0.9757795166466966, 'rouge2': 0.9586013928880327, 'rougeL': 0.9745320041915129, 'rougeLsum': 0.9755165129747526} {'exact_match': 0.0}
0.0458 4.9986 4995 0.0847 {'bleu': 0.9570671016785056, 'precisions': [0.976919456982413, 0.9611588208136713, 0.9499201259530098, 0.9406510563080023], 'brevity_penalty': 1.0, 'length_ratio': 1.0003430187081541, 'translation_length': 696994, 'reference_length': 696755} {'rouge1': 0.9755632054095464, 'rouge2': 0.9582426903380377, 'rougeL': 0.9743228923598912, 'rougeLsum': 0.9753134364311447} {'exact_match': 0.0}

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.2
  • Pytorch 2.2.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ninyx/Mistral-7B-Instruct-v0.3-advisegpt-v0.2

Adapter
(195)
this model