|
--- |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
license: mit |
|
base_model: microsoft/Phi-3-mini-128k-instruct |
|
--- |
|
|
|
# Phi-3-mini-128k-instruct-quantized.w8a16 |
|
|
|
## Model Overview |
|
- **Model Architecture:** Phi-3 |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** INT8 |
|
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct), this models is intended for assistant-like chat. |
|
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. |
|
- **Release Date:** 7/11/2024 |
|
- **Version:** 1.0 |
|
- **License(s):** [MIT](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md) |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct), a 3.8 billion-parameter open model trained using the Phi-3 datasets. |
|
It achieves an average score of 69.53 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 69.59. |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights of [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) to INT8 data type. |
|
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. |
|
|
|
Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT8 and floating point representations of the quantized weights. |
|
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. GPTQ used a 1% damping factor and 256 sequences of 8,192 random tokens. |
|
|
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
from transformers import AutoTokenizer |
|
|
|
model_id = "neuralmagic/Phi-3-mini-128k-instruct-quantized.w8a16" |
|
number_gpus = 1 |
|
|
|
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
|
|
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) |
|
|
|
llm = LLM(model=model_id, trust_remote_code=True, max_model_len=8196, tensor_parallel_size=number_gpus) |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
|
|
generated_text = outputs[0].outputs[0].text |
|
print(generated_text) |
|
``` |
|
|
|
|
|
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
### Use with transformers |
|
|
|
The following example contemplates how the model can be deployed in Transformers using the `generate()` function. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_id = "neuralmagic/Phi-3-mini-128k-instruct-quantized.w8a16" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype="auto", |
|
device_map="auto", |
|
trust_remote_code=True, |
|
) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=256, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9, |
|
) |
|
response = outputs[0][input_ids.shape[-1]:] |
|
print(tokenizer.decode(response, skip_special_tokens=True)) |
|
``` |
|
|
|
## Creation |
|
|
|
This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below. |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from datasets import Dataset |
|
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot |
|
from llmcompressor.modifiers.quantization import GPTQModifier |
|
import random |
|
|
|
model_id = "microsoft/Phi-3-mini-128k-instruct" |
|
|
|
num_samples = 256 |
|
max_seq_len = 8192 |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
|
|
max_token_id = len(tokenizer.get_vocab()) - 1 |
|
input_ids = [[random.randint(0, max_token_id) for _ in range(max_seq_len)] for _ in range(num_samples)] |
|
attention_mask = num_samples * [max_seq_len * [1]] |
|
ds = Dataset.from_dict({"input_ids": input_ids, "attention_mask": attention_mask}) |
|
|
|
recipe = GPTQModifier( |
|
targets="Linear", |
|
scheme="W8A16", |
|
ignore=["lm_head"], |
|
dampening_frac=0.01, |
|
) |
|
|
|
model = SparseAutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
) |
|
|
|
oneshot( |
|
model=model, |
|
dataset=ds, |
|
recipe=recipe, |
|
max_seq_length=max_seq_len, |
|
num_calibration_samples=num_samples, |
|
tokenizer=tokenizer, |
|
) |
|
|
|
model.save_pretrained("Phi-3-mini-128k-instruct-quantized.w8a16") |
|
``` |
|
|
|
|
|
|
|
## Evaluation |
|
|
|
The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command: |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Phi-3-mini-128k-instruct-quantized.w8a16",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \ |
|
--tasks openllm \ |
|
--batch_size auto |
|
``` |
|
|
|
### Accuracy |
|
|
|
#### Open LLM Leaderboard evaluation scores |
|
<table> |
|
<tr> |
|
<td><strong>Benchmark</strong> |
|
</td> |
|
<td><strong>Phi-3-mini-128k-instruct </strong> |
|
</td> |
|
<td><strong>Phi-3-mini-128k-instruct-quantized.w8a16(this model)</strong> |
|
</td> |
|
<td><strong>Recovery</strong> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>MMLU (5-shot) |
|
</td> |
|
<td>69.36 |
|
</td> |
|
<td>69.33 |
|
</td> |
|
<td>99.9% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>ARC Challenge (25-shot) |
|
</td> |
|
<td>63.23 |
|
</td> |
|
<td>63.23 |
|
</td> |
|
<td>100.0% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>GSM-8K (5-shot, strict-match) |
|
</td> |
|
<td>76.65 |
|
</td> |
|
<td>76.19 |
|
</td> |
|
<td>99.4% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Hellaswag (10-shot) |
|
</td> |
|
<td>79.64 |
|
</td> |
|
<td>79.52 |
|
</td> |
|
<td>99.8% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Winogrande (5-shot) |
|
</td> |
|
<td>74.27 |
|
</td> |
|
<td>74.35 |
|
</td> |
|
<td>100.9% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>TruthfulQA (0-shot) |
|
</td> |
|
<td>54.42 |
|
</td> |
|
<td>54.19 |
|
</td> |
|
<td>99.6% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td><strong>Average</strong> |
|
</td> |
|
<td><strong>69.59</strong> |
|
</td> |
|
<td><strong>69.53</strong> |
|
</td> |
|
<td><strong>99.9%</strong> |
|
</td> |
|
</tr> |
|
</table> |