Update README.md
Browse files
README.md
CHANGED
@@ -90,838 +90,6 @@ for TASK in "${!tasks_fewshot[@]}"; do
|
|
90 |
done
|
91 |
```
|
92 |
|
93 |
-
In vllm=0.5.0, Phi-3 models are not fully supported, and running the above script will yield an AssertionError. However, replacing the file that throws an error with the file below will fix the issue.
|
94 |
-
|
95 |
-
|
96 |
-
```
|
97 |
-
from abc import abstractmethod
|
98 |
-
from typing import Dict, List, Optional, Tuple
|
99 |
-
|
100 |
-
import torch
|
101 |
-
import torch.nn.functional as F
|
102 |
-
from torch.nn.parameter import Parameter
|
103 |
-
|
104 |
-
from vllm.distributed import (divide, get_tensor_model_parallel_rank,
|
105 |
-
get_tensor_model_parallel_world_size,
|
106 |
-
split_tensor_along_last_dim,
|
107 |
-
tensor_model_parallel_all_gather,
|
108 |
-
tensor_model_parallel_all_reduce)
|
109 |
-
from vllm.logger import init_logger
|
110 |
-
from vllm.model_executor.layers.quantization.base_config import (
|
111 |
-
QuantizationConfig, QuantizeMethodBase)
|
112 |
-
from vllm.model_executor.utils import set_weight_attrs
|
113 |
-
|
114 |
-
logger = init_logger(__name__)
|
115 |
-
|
116 |
-
|
117 |
-
def adjust_marlin_shard(param, shard_size, shard_offset):
|
118 |
-
marlin_tile_size = getattr(param, "marlin_tile_size", None)
|
119 |
-
if marlin_tile_size is None:
|
120 |
-
return shard_size, shard_offset
|
121 |
-
|
122 |
-
return shard_size * marlin_tile_size, shard_offset * marlin_tile_size
|
123 |
-
|
124 |
-
|
125 |
-
def adjust_bitsandbytes_shard(param: Parameter,
|
126 |
-
qkv_offsets: Dict[str, Tuple[int, int]],
|
127 |
-
loaded_shard_id: str) -> Tuple[int, int]:
|
128 |
-
"""Adjust the quantization offsets and sizes for BitsAndBytes sharding."""
|
129 |
-
|
130 |
-
total, _ = qkv_offsets["total"]
|
131 |
-
orig_offset, orig_size = qkv_offsets[loaded_shard_id]
|
132 |
-
|
133 |
-
quantized_total = param.data.shape[0]
|
134 |
-
quantized_offset = orig_offset * quantized_total // total
|
135 |
-
quantized_size = orig_size * quantized_total // total
|
136 |
-
|
137 |
-
return quantized_size, quantized_offset
|
138 |
-
|
139 |
-
|
140 |
-
class LinearMethodBase(QuantizeMethodBase):
|
141 |
-
"""Base class for different (maybe quantized) linear methods."""
|
142 |
-
|
143 |
-
@abstractmethod
|
144 |
-
def create_weights(self, layer: torch.nn.Module,
|
145 |
-
input_size_per_partition: int,
|
146 |
-
output_partition_sizes: List[int], input_size: int,
|
147 |
-
output_size: int, params_dtype: torch.dtype,
|
148 |
-
**extra_weight_attrs):
|
149 |
-
"""Create weights for a linear layer.
|
150 |
-
The weights will be set as attributes of the layer.
|
151 |
-
|
152 |
-
Args:
|
153 |
-
layer: The layer that is using the LinearMethodBase factory.
|
154 |
-
input_size_per_partition: Size of the weight input dim on rank X.
|
155 |
-
output_partition_sizes: Sizes of the output dim of each logical
|
156 |
-
weight on rank X. E.g., output_partition_sizes for QKVLinear
|
157 |
-
is a list contains the width of Wq, Wk, Wv on rank X.
|
158 |
-
input_size: Size of the input dim of the weight across all ranks.
|
159 |
-
output_size: Size of the output dim of the weight across all ranks.
|
160 |
-
params_dtype: Datatype of the parameters.
|
161 |
-
"""
|
162 |
-
raise NotImplementedError
|
163 |
-
|
164 |
-
@abstractmethod
|
165 |
-
def apply(self,
|
166 |
-
layer: torch.nn.Module,
|
167 |
-
x: torch.Tensor,
|
168 |
-
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
169 |
-
"""Apply the weights in layer to the input tensor.
|
170 |
-
Expects create_weights to have been called before on the layer."""
|
171 |
-
raise NotImplementedError
|
172 |
-
|
173 |
-
|
174 |
-
class UnquantizedLinearMethod(LinearMethodBase):
|
175 |
-
"""Linear method without quantization.
|
176 |
-
|
177 |
-
Args:
|
178 |
-
separate_bias_add: If true, add bias separately after matrix
|
179 |
-
multiplication.
|
180 |
-
"""
|
181 |
-
|
182 |
-
def __init__(self, separate_bias_add: bool = False):
|
183 |
-
self.separate_bias_add = separate_bias_add
|
184 |
-
|
185 |
-
def create_weights(self, layer: torch.nn.Module,
|
186 |
-
input_size_per_partition: int,
|
187 |
-
output_partition_sizes: List[int], input_size: int,
|
188 |
-
output_size: int, params_dtype: torch.dtype,
|
189 |
-
**extra_weight_attrs):
|
190 |
-
weight = Parameter(torch.empty(sum(output_partition_sizes),
|
191 |
-
input_size_per_partition,
|
192 |
-
dtype=params_dtype),
|
193 |
-
requires_grad=False)
|
194 |
-
set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0})
|
195 |
-
layer.register_parameter("weight", weight)
|
196 |
-
set_weight_attrs(weight, extra_weight_attrs)
|
197 |
-
|
198 |
-
def apply(self,
|
199 |
-
layer: torch.nn.Module,
|
200 |
-
x: torch.Tensor,
|
201 |
-
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
202 |
-
weight = layer.weight
|
203 |
-
if self.separate_bias_add:
|
204 |
-
if bias is not None:
|
205 |
-
return F.linear(x, weight) + bias
|
206 |
-
return F.linear(x, weight)
|
207 |
-
return F.linear(x, weight, bias)
|
208 |
-
|
209 |
-
|
210 |
-
class LinearBase(torch.nn.Module):
|
211 |
-
"""Base linear layer.
|
212 |
-
|
213 |
-
Args:
|
214 |
-
input_size: input dimension of the linear layer.
|
215 |
-
output_size: output dimension of the linear layer.
|
216 |
-
bias: If true, add bias.
|
217 |
-
skip_bias_add: If true, skip adding bias but instead return it.
|
218 |
-
params_dtype: Data type for the parameters.
|
219 |
-
quant_config: Quantization configure.
|
220 |
-
"""
|
221 |
-
|
222 |
-
def __init__(
|
223 |
-
self,
|
224 |
-
input_size: int,
|
225 |
-
output_size: int,
|
226 |
-
skip_bias_add: bool = False,
|
227 |
-
params_dtype: Optional[torch.dtype] = None,
|
228 |
-
quant_config: Optional[QuantizationConfig] = None,
|
229 |
-
):
|
230 |
-
super().__init__()
|
231 |
-
|
232 |
-
# Keep input parameters
|
233 |
-
self.input_size = input_size
|
234 |
-
self.output_size = output_size
|
235 |
-
self.skip_bias_add = skip_bias_add
|
236 |
-
if params_dtype is None:
|
237 |
-
params_dtype = torch.get_default_dtype()
|
238 |
-
self.params_dtype = params_dtype
|
239 |
-
if quant_config is None:
|
240 |
-
self.quant_method: Optional[
|
241 |
-
QuantizeMethodBase] = UnquantizedLinearMethod()
|
242 |
-
else:
|
243 |
-
self.quant_method = quant_config.get_quant_method(self)
|
244 |
-
|
245 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
246 |
-
raise NotImplementedError
|
247 |
-
|
248 |
-
|
249 |
-
class ReplicatedLinear(LinearBase):
|
250 |
-
"""Replicated linear layer.
|
251 |
-
|
252 |
-
Args:
|
253 |
-
input_size: input dimension of the linear layer.
|
254 |
-
output_size: output dimension of the linear layer.
|
255 |
-
bias: If true, add bias.
|
256 |
-
skip_bias_add: If true, skip adding bias but instead return it.
|
257 |
-
params_dtype: Data type for the parameters.
|
258 |
-
quant_config: Quantization configure.
|
259 |
-
"""
|
260 |
-
|
261 |
-
def __init__(self,
|
262 |
-
input_size: int,
|
263 |
-
output_size: int,
|
264 |
-
bias: bool = True,
|
265 |
-
skip_bias_add: bool = False,
|
266 |
-
params_dtype: Optional[torch.dtype] = None,
|
267 |
-
quant_config: Optional[QuantizationConfig] = None):
|
268 |
-
super().__init__(input_size, output_size, skip_bias_add, params_dtype,
|
269 |
-
quant_config)
|
270 |
-
|
271 |
-
# All the linear layer supports quant method.
|
272 |
-
assert self.quant_method is not None
|
273 |
-
self.quant_method.create_weights(self, self.input_size,
|
274 |
-
[self.output_size], self.input_size,
|
275 |
-
self.output_size, self.params_dtype)
|
276 |
-
|
277 |
-
if bias:
|
278 |
-
self.bias = Parameter(
|
279 |
-
torch.empty(self.output_size, dtype=self.params_dtype))
|
280 |
-
set_weight_attrs(self.bias, {"output_dim": 0})
|
281 |
-
else:
|
282 |
-
self.register_parameter("bias", None)
|
283 |
-
|
284 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
285 |
-
bias = self.bias if not self.skip_bias_add else None
|
286 |
-
assert self.quant_method is not None
|
287 |
-
output = self.quant_method.apply(self, x, bias)
|
288 |
-
output_bias = self.bias if self.skip_bias_add else None
|
289 |
-
return output, output_bias
|
290 |
-
|
291 |
-
def extra_repr(self) -> str:
|
292 |
-
s = f"in_features={self.input_size}"
|
293 |
-
s += f", output_features={self.output_size}"
|
294 |
-
s += f", bias={self.bias is not None}"
|
295 |
-
return s
|
296 |
-
|
297 |
-
|
298 |
-
class ColumnParallelLinear(LinearBase):
|
299 |
-
"""Linear layer with column parallelism.
|
300 |
-
|
301 |
-
The linear layer is defined as Y = XA + b. A is parallelized along
|
302 |
-
its second dimension as A = [A_1, ..., A_p].
|
303 |
-
|
304 |
-
Args:
|
305 |
-
input_size: first dimension of matrix A.
|
306 |
-
output_size: second dimension of matrix A.
|
307 |
-
bias: If true, add bias.
|
308 |
-
gather_output: If true, call all-gather on output and make Y available
|
309 |
-
to all GPUs, otherwise, every GPU will have its output
|
310 |
-
which is Y_i = XA_i
|
311 |
-
skip_bias_add: This was added to enable performance optimizations where
|
312 |
-
bias can be fused with other element-wise operations. we
|
313 |
-
skip adding bias but instead return it.
|
314 |
-
params_dtype: Data type for the parameters.
|
315 |
-
quant_config: Quantization configure.
|
316 |
-
output_sizes: list of output sizes packed into one output, like for QKV
|
317 |
-
the list would be size 3.
|
318 |
-
"""
|
319 |
-
|
320 |
-
def __init__(self,
|
321 |
-
input_size: int,
|
322 |
-
output_size: int,
|
323 |
-
bias: bool = True,
|
324 |
-
gather_output: bool = False,
|
325 |
-
skip_bias_add: bool = False,
|
326 |
-
params_dtype: Optional[torch.dtype] = None,
|
327 |
-
quant_config: Optional[QuantizationConfig] = None,
|
328 |
-
output_sizes: Optional[List[int]] = None):
|
329 |
-
super().__init__(input_size, output_size, skip_bias_add, params_dtype,
|
330 |
-
quant_config)
|
331 |
-
|
332 |
-
self.gather_output = gather_output
|
333 |
-
|
334 |
-
# Divide the weight matrix along the last dimension.
|
335 |
-
tp_size = get_tensor_model_parallel_world_size()
|
336 |
-
assert self.quant_method is not None
|
337 |
-
self.output_size_per_partition = divide(self.output_size, tp_size)
|
338 |
-
self.output_partition_sizes = [self.output_size_per_partition]
|
339 |
-
# If QKV or MergedColumn, use output size of each partition.
|
340 |
-
if hasattr(self, "output_sizes"):
|
341 |
-
self.output_partition_sizes = [
|
342 |
-
divide(output_size, tp_size)
|
343 |
-
for output_size in self.output_sizes
|
344 |
-
]
|
345 |
-
|
346 |
-
if output_sizes is None:
|
347 |
-
output_sizes = [output_size]
|
348 |
-
self.quant_method.create_weights(
|
349 |
-
layer=self,
|
350 |
-
input_size_per_partition=self.input_size,
|
351 |
-
output_partition_sizes=self.output_partition_sizes,
|
352 |
-
input_size=self.input_size,
|
353 |
-
output_size=self.output_size,
|
354 |
-
params_dtype=self.params_dtype,
|
355 |
-
weight_loader=self.weight_loader)
|
356 |
-
if bias:
|
357 |
-
self.bias = Parameter(
|
358 |
-
torch.empty(self.output_size_per_partition,
|
359 |
-
dtype=params_dtype))
|
360 |
-
set_weight_attrs(self.bias, {
|
361 |
-
"output_dim": 0,
|
362 |
-
"weight_loader": self.weight_loader,
|
363 |
-
})
|
364 |
-
else:
|
365 |
-
self.register_parameter("bias", None)
|
366 |
-
|
367 |
-
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
|
368 |
-
# Special case for Fp8 scales.
|
369 |
-
fp8_scales_shard_indexer = getattr(param, "fp8_scales_shard_indexer",
|
370 |
-
None)
|
371 |
-
|
372 |
-
tp_rank = get_tensor_model_parallel_rank()
|
373 |
-
output_dim = getattr(param, "output_dim", None)
|
374 |
-
param_data = param.data
|
375 |
-
if output_dim is not None:
|
376 |
-
shard_size = param_data.shape[output_dim]
|
377 |
-
start_idx = tp_rank * shard_size
|
378 |
-
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
|
379 |
-
shard_size)
|
380 |
-
# Special case for Fp8 scales.
|
381 |
-
elif fp8_scales_shard_indexer is not None:
|
382 |
-
param_data, loaded_weight = fp8_scales_shard_indexer(param_data,
|
383 |
-
loaded_weight,
|
384 |
-
shard_id=0)
|
385 |
-
|
386 |
-
assert param_data.shape == loaded_weight.shape
|
387 |
-
param_data.copy_(loaded_weight)
|
388 |
-
|
389 |
-
def forward(self, input_):
|
390 |
-
bias = self.bias if not self.skip_bias_add else None
|
391 |
-
|
392 |
-
# Matrix multiply.
|
393 |
-
assert self.quant_method is not None
|
394 |
-
output_parallel = self.quant_method.apply(self, input_, bias)
|
395 |
-
if self.gather_output:
|
396 |
-
# All-gather across the partitions.
|
397 |
-
output = tensor_model_parallel_all_gather(output_parallel)
|
398 |
-
else:
|
399 |
-
output = output_parallel
|
400 |
-
output_bias = self.bias if self.skip_bias_add else None
|
401 |
-
return output, output_bias
|
402 |
-
|
403 |
-
def extra_repr(self) -> str:
|
404 |
-
s = f"in_features={self.input_size}"
|
405 |
-
s += f", output_features={self.output_size_per_partition}"
|
406 |
-
s += f", bias={self.bias is not None}"
|
407 |
-
s += f", tp_size={get_tensor_model_parallel_world_size()}"
|
408 |
-
s += f", gather_output={self.gather_output}"
|
409 |
-
return s
|
410 |
-
|
411 |
-
|
412 |
-
class MergedColumnParallelLinear(ColumnParallelLinear):
|
413 |
-
"""Packed linear layers with column parallelism.
|
414 |
-
|
415 |
-
Similar to ColumnParallelLinear, but the weight matrix is concatenated
|
416 |
-
along the output dimension. When the weight matrix is loaded, the
|
417 |
-
different partitions are sharded separately.
|
418 |
-
|
419 |
-
Args:
|
420 |
-
input_size: input dimension of the linear layer.
|
421 |
-
output_sizes: list of output dimensions of the linear layer.
|
422 |
-
bias: If true, add bias.
|
423 |
-
gather_output: If true, call all-gather on output and make the output
|
424 |
-
available to all GPUs, otherwise, every GPU will have
|
425 |
-
its own output.
|
426 |
-
skip_bias_add: This was added to enable performance optimizations where
|
427 |
-
bias can be fused with other element-wise operations. we
|
428 |
-
skip adding bias but instead return it.
|
429 |
-
params_dtype: Data type for the parameters.
|
430 |
-
quant_config: Quantization configure.
|
431 |
-
"""
|
432 |
-
|
433 |
-
def __init__(self,
|
434 |
-
input_size: int,
|
435 |
-
output_sizes: List[int],
|
436 |
-
bias: bool = True,
|
437 |
-
gather_output: bool = False,
|
438 |
-
skip_bias_add: bool = False,
|
439 |
-
params_dtype: Optional[torch.dtype] = None,
|
440 |
-
quant_config: Optional[QuantizationConfig] = None):
|
441 |
-
self.output_sizes = output_sizes
|
442 |
-
tp_size = get_tensor_model_parallel_world_size()
|
443 |
-
assert all(output_size % tp_size == 0 for output_size in output_sizes)
|
444 |
-
super().__init__(input_size=input_size,
|
445 |
-
output_size=sum(output_sizes),
|
446 |
-
bias=bias,
|
447 |
-
gather_output=gather_output,
|
448 |
-
skip_bias_add=skip_bias_add,
|
449 |
-
params_dtype=params_dtype,
|
450 |
-
quant_config=quant_config)
|
451 |
-
|
452 |
-
def weight_loader(self,
|
453 |
-
param: Parameter,
|
454 |
-
loaded_weight: torch.Tensor,
|
455 |
-
loaded_shard_id: Optional[int] = None):
|
456 |
-
|
457 |
-
param_data = param.data
|
458 |
-
output_dim = getattr(param, "output_dim", None)
|
459 |
-
# Special case for AQLM codebooks.
|
460 |
-
is_metadata = getattr(param, "is_metadata", False)
|
461 |
-
|
462 |
-
param_shard_splitter = getattr(param, "shard_splitter", None)
|
463 |
-
|
464 |
-
if output_dim is not None and param_shard_splitter is not None:
|
465 |
-
raise NotImplementedError(
|
466 |
-
"We do not currently support output_dim != None and "
|
467 |
-
"shard_splitter != None for a parameter. Please open an issue."
|
468 |
-
)
|
469 |
-
# If a parameter has defined a shard_splitter to be used for
|
470 |
-
# the weight, it should be applied before the weight is
|
471 |
-
# loaded/copied to the parameter. The shard_splitter applies
|
472 |
-
# logic by using the loaded_shard_id to ensure that the loaded
|
473 |
-
# param is loaded to the correct location
|
474 |
-
# within the parameter defined by the linear method.
|
475 |
-
if loaded_shard_id is None and param_shard_splitter is not None:
|
476 |
-
raise NotImplementedError(
|
477 |
-
"We do not currently support loaded_shard_id == None and "
|
478 |
-
"shard_splitter != None for a parameter. Please open an issue."
|
479 |
-
)
|
480 |
-
|
481 |
-
# Special case for Fp8 scales.
|
482 |
-
fp8_scales_shard_indexer = getattr(param, "fp8_scales_shard_indexer",
|
483 |
-
None)
|
484 |
-
|
485 |
-
if loaded_shard_id is None:
|
486 |
-
# Loaded weight is already packed.
|
487 |
-
if output_dim is None:
|
488 |
-
temp = loaded_weight.repeat(param_data.shape)
|
489 |
-
assert param_data.shape == temp.shape
|
490 |
-
param_data.copy_(temp)
|
491 |
-
return
|
492 |
-
current_shard_offset = 0
|
493 |
-
shard_offsets = []
|
494 |
-
for i, output_size in enumerate(self.output_sizes):
|
495 |
-
shard_offsets.append((i, current_shard_offset, output_size))
|
496 |
-
current_shard_offset += output_size
|
497 |
-
packed_dim = getattr(param, "packed_dim", None)
|
498 |
-
for shard_id, shard_offset, shard_size in shard_offsets:
|
499 |
-
# Special case for Quantization.
|
500 |
-
# If quantized, we need to adjust the offset and size to account
|
501 |
-
# for the packing.
|
502 |
-
if packed_dim == output_dim:
|
503 |
-
shard_size = shard_size // param.pack_factor
|
504 |
-
shard_offset = shard_offset // param.pack_factor
|
505 |
-
# Special case for Marlin.
|
506 |
-
shard_size, shard_offset = adjust_marlin_shard(
|
507 |
-
param, shard_size, shard_offset)
|
508 |
-
|
509 |
-
loaded_weight_shard = loaded_weight.narrow(
|
510 |
-
output_dim, shard_offset, shard_size)
|
511 |
-
self.weight_loader(param, loaded_weight_shard, shard_id)
|
512 |
-
return
|
513 |
-
|
514 |
-
assert loaded_shard_id < len(self.output_sizes)
|
515 |
-
tp_rank = get_tensor_model_parallel_rank()
|
516 |
-
tp_size = get_tensor_model_parallel_world_size()
|
517 |
-
if output_dim is not None:
|
518 |
-
shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
|
519 |
-
shard_size = self.output_sizes[loaded_shard_id] // tp_size
|
520 |
-
# Special case for quantization.
|
521 |
-
# If quantized, we need to adjust the offset and size to account
|
522 |
-
# for the packing.
|
523 |
-
packed_dim = getattr(param, "packed_dim", None)
|
524 |
-
if packed_dim == output_dim:
|
525 |
-
shard_size = shard_size // param.pack_factor
|
526 |
-
shard_offset = shard_offset // param.pack_factor
|
527 |
-
# Special case for Marlin.
|
528 |
-
shard_size, shard_offset = adjust_marlin_shard(
|
529 |
-
param, shard_size, shard_offset)
|
530 |
-
|
531 |
-
use_bitsandbytes = getattr(param, "use_bitsandbytes", False)
|
532 |
-
if use_bitsandbytes:
|
533 |
-
shard_size = loaded_weight.shape[output_dim]
|
534 |
-
shard_offset = loaded_weight.shape[output_dim] * \
|
535 |
-
loaded_shard_id
|
536 |
-
|
537 |
-
param_data = param_data.narrow(output_dim, shard_offset,
|
538 |
-
shard_size)
|
539 |
-
start_idx = tp_rank * shard_size
|
540 |
-
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
|
541 |
-
shard_size)
|
542 |
-
# Special case for AQLM codebooks.
|
543 |
-
elif is_metadata:
|
544 |
-
# metadata indicates fixed size concatenated along dim 0
|
545 |
-
shard_size = loaded_weight.shape[0]
|
546 |
-
shard_offset = loaded_shard_id * shard_size
|
547 |
-
param_data = param_data.narrow(0, shard_offset, shard_size)
|
548 |
-
|
549 |
-
# If a param_shard_splitter is defined by the LinearMethod, use it.
|
550 |
-
elif param_shard_splitter is not None:
|
551 |
-
logical_widths = getattr(param, "logical_widths", None)
|
552 |
-
param_data, loaded_weight = param_shard_splitter(
|
553 |
-
param_data, loaded_weight, loaded_shard_id, logical_widths)
|
554 |
-
|
555 |
-
# Special case for Fp8 scales.
|
556 |
-
elif fp8_scales_shard_indexer is not None:
|
557 |
-
param_data, loaded_weight = fp8_scales_shard_indexer(
|
558 |
-
param_data, loaded_weight, loaded_shard_id)
|
559 |
-
|
560 |
-
else:
|
561 |
-
ignore_warning = getattr(param, "ignore_warning", False)
|
562 |
-
if not ignore_warning:
|
563 |
-
logger.warning(
|
564 |
-
"Loading a weight without `output_dim` attribute in "
|
565 |
-
"MergedColumnParallelLinear, assume the weight is "
|
566 |
-
"the same for all partitions.")
|
567 |
-
|
568 |
-
if fp8_scales_shard_indexer is None:
|
569 |
-
if len(param_data.shape) == 0:
|
570 |
-
param_data = param_data.reshape(1)
|
571 |
-
|
572 |
-
if len(loaded_weight.shape) == 0:
|
573 |
-
loaded_weight = loaded_weight.reshape(1)
|
574 |
-
|
575 |
-
assert param_data.shape == loaded_weight.shape
|
576 |
-
param_data.copy_(loaded_weight)
|
577 |
-
|
578 |
-
|
579 |
-
class QKVParallelLinear(ColumnParallelLinear):
|
580 |
-
"""Linear layers for the attention's QKV transformation.
|
581 |
-
|
582 |
-
Linear layers for the linear transformation of the query, key, and value
|
583 |
-
vectors in the attention layer. The weight matrix is concatenated along
|
584 |
-
the output dimension. The layer is parallelized along the head dimension.
|
585 |
-
When the number of key/value heads is smaller than the number of query
|
586 |
-
heads (e.g., multi-query/grouped-query attention), the key/value head may
|
587 |
-
be replicated while the query heads are partitioned.
|
588 |
-
|
589 |
-
Args:
|
590 |
-
hidden_size: input hidden state size of the transformer.
|
591 |
-
head_size: size of each attention head.
|
592 |
-
total_num_heads: total number of attention query heads.
|
593 |
-
total_num_kv_heads: total number of attention key/value heads. If
|
594 |
-
None, assume total_num_kv_heads = total_num_heads.
|
595 |
-
bias: If true, add bias.
|
596 |
-
skip_bias_add: This was added to enable performance optimizations where
|
597 |
-
bias can be fused with other element-wise operations. we
|
598 |
-
skip adding bias but instead return it.
|
599 |
-
params_dtype: Data type for the parameters.
|
600 |
-
quant_config: Quantization configure.
|
601 |
-
"""
|
602 |
-
|
603 |
-
def __init__(self,
|
604 |
-
hidden_size: int,
|
605 |
-
head_size: int,
|
606 |
-
total_num_heads: int,
|
607 |
-
total_num_kv_heads: Optional[int] = None,
|
608 |
-
bias: bool = True,
|
609 |
-
skip_bias_add: bool = False,
|
610 |
-
params_dtype: Optional[torch.dtype] = None,
|
611 |
-
quant_config: Optional[QuantizationConfig] = None):
|
612 |
-
self.hidden_size = hidden_size
|
613 |
-
self.head_size = head_size
|
614 |
-
self.total_num_heads = total_num_heads
|
615 |
-
if total_num_kv_heads is None:
|
616 |
-
total_num_kv_heads = total_num_heads
|
617 |
-
self.total_num_kv_heads = total_num_kv_heads
|
618 |
-
# Divide the weight matrix along the last dimension.
|
619 |
-
tp_size = get_tensor_model_parallel_world_size()
|
620 |
-
self.num_heads = divide(self.total_num_heads, tp_size)
|
621 |
-
if tp_size >= self.total_num_kv_heads:
|
622 |
-
self.num_kv_heads = 1
|
623 |
-
self.num_kv_head_replicas = divide(tp_size,
|
624 |
-
self.total_num_kv_heads)
|
625 |
-
else:
|
626 |
-
self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
|
627 |
-
self.num_kv_head_replicas = 1
|
628 |
-
input_size = self.hidden_size
|
629 |
-
output_size = (self.num_heads +
|
630 |
-
2 * self.num_kv_heads) * tp_size * self.head_size
|
631 |
-
self.output_sizes = [
|
632 |
-
self.num_heads * self.head_size * tp_size, # q_proj
|
633 |
-
self.num_kv_heads * self.head_size * tp_size, # k_proj
|
634 |
-
self.num_kv_heads * self.head_size * tp_size, # v_proj
|
635 |
-
]
|
636 |
-
|
637 |
-
super().__init__(input_size=input_size,
|
638 |
-
output_size=output_size,
|
639 |
-
bias=bias,
|
640 |
-
gather_output=False,
|
641 |
-
skip_bias_add=skip_bias_add,
|
642 |
-
params_dtype=params_dtype,
|
643 |
-
quant_config=quant_config)
|
644 |
-
|
645 |
-
def weight_loader(self,
|
646 |
-
param: Parameter,
|
647 |
-
loaded_weight: torch.Tensor,
|
648 |
-
loaded_shard_id: Optional[str] = None):
|
649 |
-
param_data = param.data
|
650 |
-
output_dim = getattr(param, "output_dim", None)
|
651 |
-
# Special case for AQLM codebooks.
|
652 |
-
is_metadata = getattr(param, "is_metadata", False)
|
653 |
-
|
654 |
-
param_shard_splitter = getattr(param, "shard_splitter", None)
|
655 |
-
|
656 |
-
if output_dim is not None and param_shard_splitter is not None:
|
657 |
-
raise NotImplementedError(
|
658 |
-
"We do not currently support output_dim != None and "
|
659 |
-
"shard_splitter != None for a parameter. Please open an issue."
|
660 |
-
)
|
661 |
-
# If a parameter has defined a shard_splitter to be used for
|
662 |
-
# the weight, it should be applied before the weight is
|
663 |
-
# loaded/copied to the parameter. The shard_splitter applies
|
664 |
-
# logic by using the loaded_shard_id to ensure that the loaded
|
665 |
-
# param is loaded to the correct location
|
666 |
-
# within the parameter defined by the linear method.
|
667 |
-
if loaded_shard_id is None and param_shard_splitter is not None:
|
668 |
-
raise NotImplementedError(
|
669 |
-
"We do not currently support loaded_shard_id == None and "
|
670 |
-
"shard_splitter != None for a parameter. Please open an issue."
|
671 |
-
)
|
672 |
-
|
673 |
-
# Special case for Fp8 scales.
|
674 |
-
fp8_scales_shard_indexer = getattr(param, "fp8_scales_shard_indexer",
|
675 |
-
None)
|
676 |
-
|
677 |
-
if loaded_shard_id is None:
|
678 |
-
# Loaded weight is already packed.
|
679 |
-
if output_dim is None:
|
680 |
-
temp = loaded_weight.repeat(param_data.shape)
|
681 |
-
assert param_data.shape == temp.shape
|
682 |
-
param_data.copy_(temp)
|
683 |
-
return
|
684 |
-
shard_offsets = [
|
685 |
-
# (shard_id, shard_offset, shard_size)
|
686 |
-
("q", 0, self.total_num_heads * self.head_size),
|
687 |
-
("k", self.total_num_heads * self.head_size,
|
688 |
-
self.total_num_kv_heads * self.head_size),
|
689 |
-
("v", (self.total_num_heads + self.total_num_kv_heads) *
|
690 |
-
self.head_size, self.total_num_kv_heads * self.head_size),
|
691 |
-
]
|
692 |
-
packed_dim = getattr(param, "packed_dim", None)
|
693 |
-
for shard_id, shard_offset, shard_size in shard_offsets:
|
694 |
-
# Special case for Quantized Weights.
|
695 |
-
# If quantized, we need to adjust the offset and size to account
|
696 |
-
# for the packing.
|
697 |
-
if packed_dim == output_dim:
|
698 |
-
shard_size = shard_size // param.pack_factor
|
699 |
-
shard_offset = shard_offset // param.pack_factor
|
700 |
-
|
701 |
-
# Special case for Marlin.
|
702 |
-
shard_size, shard_offset = adjust_marlin_shard(
|
703 |
-
param, shard_size, shard_offset)
|
704 |
-
|
705 |
-
loaded_weight_shard = loaded_weight.narrow(
|
706 |
-
output_dim, shard_offset, shard_size)
|
707 |
-
self.weight_loader(param, loaded_weight_shard, shard_id)
|
708 |
-
return
|
709 |
-
|
710 |
-
tp_rank = get_tensor_model_parallel_rank()
|
711 |
-
assert loaded_shard_id in ["q", "k", "v"]
|
712 |
-
|
713 |
-
# If output dim is defined, use the default loading process.
|
714 |
-
if output_dim is not None:
|
715 |
-
if loaded_shard_id == "q":
|
716 |
-
shard_offset = 0
|
717 |
-
shard_size = self.num_heads * self.head_size
|
718 |
-
elif loaded_shard_id == "k":
|
719 |
-
shard_offset = self.num_heads * self.head_size
|
720 |
-
shard_size = self.num_kv_heads * self.head_size
|
721 |
-
elif loaded_shard_id == "v":
|
722 |
-
shard_offset = (self.num_heads +
|
723 |
-
self.num_kv_heads) * self.head_size
|
724 |
-
shard_size = self.num_kv_heads * self.head_size
|
725 |
-
# Special case for Quantized Weights.
|
726 |
-
# If quantized, we need to adjust the offset and size to account
|
727 |
-
# for the packing.
|
728 |
-
packed_dim = getattr(param, "packed_dim", None)
|
729 |
-
if packed_dim == output_dim:
|
730 |
-
shard_size = shard_size // param.pack_factor
|
731 |
-
shard_offset = shard_offset // param.pack_factor
|
732 |
-
|
733 |
-
# Special case for Marlin.
|
734 |
-
shard_size, shard_offset = adjust_marlin_shard(
|
735 |
-
param, shard_size, shard_offset)
|
736 |
-
|
737 |
-
use_bitsandbytes = getattr(param, "use_bitsandbytes", False)
|
738 |
-
if use_bitsandbytes:
|
739 |
-
orig_qkv_offsets = {
|
740 |
-
"q": (0, self.num_heads * self.head_size),
|
741 |
-
"k": (self.num_heads * self.head_size,
|
742 |
-
self.num_kv_heads * self.head_size),
|
743 |
-
"v":
|
744 |
-
((self.num_heads + self.num_kv_heads) * self.head_size,
|
745 |
-
self.num_kv_heads * self.head_size),
|
746 |
-
"total":
|
747 |
-
((self.num_heads + 2 * self.num_kv_heads) * self.head_size,
|
748 |
-
0)
|
749 |
-
}
|
750 |
-
shard_size, shard_offset = adjust_bitsandbytes_shard(
|
751 |
-
param, orig_qkv_offsets, loaded_shard_id)
|
752 |
-
|
753 |
-
param_data = param_data.narrow(output_dim, shard_offset,
|
754 |
-
shard_size)
|
755 |
-
if loaded_shard_id == "q":
|
756 |
-
shard_id = tp_rank
|
757 |
-
else:
|
758 |
-
shard_id = tp_rank // self.num_kv_head_replicas
|
759 |
-
start_idx = shard_id * shard_size
|
760 |
-
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
|
761 |
-
shard_size)
|
762 |
-
# Special case for for AQLM codebooks.
|
763 |
-
elif is_metadata:
|
764 |
-
# metadata indicates fixed size concatenated along dim 0
|
765 |
-
shard_size = loaded_weight.shape[0]
|
766 |
-
shard_index = ["q", "k", "v"].index(loaded_shard_id)
|
767 |
-
param_data = param_data.narrow(0, shard_index * shard_size,
|
768 |
-
shard_size)
|
769 |
-
# If a param_shard_splitter is defined by the LinearMethod, use it.
|
770 |
-
elif param_shard_splitter is not None:
|
771 |
-
logical_widths = getattr(param, "logical_widths", None)
|
772 |
-
param_data, loaded_weight = param_shard_splitter(
|
773 |
-
param_data, loaded_weight, loaded_shard_id, logical_widths)
|
774 |
-
|
775 |
-
# Special case for Fp8 scales.
|
776 |
-
elif fp8_scales_shard_indexer is not None:
|
777 |
-
param_data, loaded_weight = fp8_scales_shard_indexer(
|
778 |
-
param_data, loaded_weight, loaded_shard_id)
|
779 |
-
else:
|
780 |
-
ignore_warning = getattr(param, "ignore_warning", False)
|
781 |
-
if not ignore_warning:
|
782 |
-
logger.warning(
|
783 |
-
"Loading a weight without `output_dim` attribute in "
|
784 |
-
"QKVParallelLinear, assume the weight is the same "
|
785 |
-
"for all partitions.")
|
786 |
-
|
787 |
-
if len(param_data.shape) == 0:
|
788 |
-
param_data = param_data.reshape(1)
|
789 |
-
|
790 |
-
if len(loaded_weight.shape) == 0:
|
791 |
-
loaded_weight = loaded_weight.reshape(1)
|
792 |
-
|
793 |
-
assert param_data.shape == loaded_weight.shape
|
794 |
-
param_data.copy_(loaded_weight)
|
795 |
-
|
796 |
-
|
797 |
-
class RowParallelLinear(LinearBase):
|
798 |
-
"""Linear layer with row parallelism.
|
799 |
-
|
800 |
-
The linear layer is defined as Y = XA + b. A is parallelized along
|
801 |
-
its first dimension and X along its second dimension as:
|
802 |
-
- -
|
803 |
-
| A_1 |
|
804 |
-
| . |
|
805 |
-
A = | . | X = [X_1, ..., X_p]
|
806 |
-
| . |
|
807 |
-
| A_p |
|
808 |
-
- -
|
809 |
-
Arguments:
|
810 |
-
input_size: first dimension of matrix A.
|
811 |
-
output_size: second dimension of matrix A.
|
812 |
-
bias: If true, add bias. Note that bias is not parallelized.
|
813 |
-
input_is_parallel: If true, we assume that the input is already
|
814 |
-
split across the GPUs and we do not split
|
815 |
-
again.
|
816 |
-
skip_bias_add: This was added to enable performance optimization where
|
817 |
-
bias can be fused with other element-wise operations.
|
818 |
-
We skip adding bias but instead return it.
|
819 |
-
params_dtype: Data type for the parameters.
|
820 |
-
quant_config: Quantization configure.
|
821 |
-
"""
|
822 |
-
|
823 |
-
def __init__(self,
|
824 |
-
input_size: int,
|
825 |
-
output_size: int,
|
826 |
-
bias: bool = True,
|
827 |
-
input_is_parallel: bool = True,
|
828 |
-
skip_bias_add: bool = False,
|
829 |
-
params_dtype: Optional[torch.dtype] = None,
|
830 |
-
reduce_results: bool = True,
|
831 |
-
quant_config: Optional[QuantizationConfig] = None):
|
832 |
-
super().__init__(input_size, output_size, skip_bias_add, params_dtype,
|
833 |
-
quant_config)
|
834 |
-
|
835 |
-
self.input_is_parallel = input_is_parallel
|
836 |
-
self.reduce_results = reduce_results
|
837 |
-
|
838 |
-
# Divide the weight matrix along the last dimension.
|
839 |
-
self.tp_size = get_tensor_model_parallel_world_size()
|
840 |
-
self.input_size_per_partition = divide(input_size, self.tp_size)
|
841 |
-
assert self.quant_method is not None
|
842 |
-
self.quant_method.create_weights(
|
843 |
-
layer=self,
|
844 |
-
input_size_per_partition=self.input_size_per_partition,
|
845 |
-
output_partition_sizes=[self.output_size],
|
846 |
-
input_size=self.input_size,
|
847 |
-
output_size=self.output_size,
|
848 |
-
params_dtype=self.params_dtype,
|
849 |
-
weight_loader=self.weight_loader)
|
850 |
-
if not reduce_results and (bias and not skip_bias_add):
|
851 |
-
raise ValueError("When not reduce the results, adding bias to the "
|
852 |
-
"results can lead to incorrect results")
|
853 |
-
|
854 |
-
if bias:
|
855 |
-
self.bias = Parameter(
|
856 |
-
torch.empty(self.output_size, dtype=params_dtype))
|
857 |
-
set_weight_attrs(self.bias, {
|
858 |
-
"output_dim": 0,
|
859 |
-
"weight_loader": self.weight_loader,
|
860 |
-
})
|
861 |
-
else:
|
862 |
-
self.register_parameter("bias", None)
|
863 |
-
|
864 |
-
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
|
865 |
-
# Special case for Fp8 scales.
|
866 |
-
fp8_scales_shard_indexer = getattr(param, "fp8_scales_shard_indexer",
|
867 |
-
None)
|
868 |
-
|
869 |
-
tp_rank = get_tensor_model_parallel_rank()
|
870 |
-
input_dim = getattr(param, "input_dim", None)
|
871 |
-
param_data = param.data
|
872 |
-
if input_dim is not None:
|
873 |
-
shard_size = param_data.shape[input_dim]
|
874 |
-
start_idx = tp_rank * shard_size
|
875 |
-
loaded_weight = loaded_weight.narrow(input_dim, start_idx,
|
876 |
-
shard_size)
|
877 |
-
|
878 |
-
# Special case for Fp8 scales.
|
879 |
-
elif fp8_scales_shard_indexer is not None:
|
880 |
-
param_data, loaded_weight = fp8_scales_shard_indexer(param_data,
|
881 |
-
loaded_weight,
|
882 |
-
shard_id=0)
|
883 |
-
|
884 |
-
if fp8_scales_shard_indexer is None and len(loaded_weight.shape) == 0:
|
885 |
-
loaded_weight = loaded_weight.reshape(1)
|
886 |
-
|
887 |
-
assert param_data.shape == loaded_weight.shape
|
888 |
-
param_data.copy_(loaded_weight)
|
889 |
-
|
890 |
-
def forward(self, input_):
|
891 |
-
# Set up backprop all-reduce.
|
892 |
-
if self.input_is_parallel:
|
893 |
-
input_parallel = input_
|
894 |
-
else:
|
895 |
-
tp_rank = get_tensor_model_parallel_rank()
|
896 |
-
splitted_input = split_tensor_along_last_dim(
|
897 |
-
input_, num_partitions=self.tp_size)
|
898 |
-
input_parallel = splitted_input[tp_rank].contiguous()
|
899 |
-
|
900 |
-
# Matrix multiply.
|
901 |
-
assert self.quant_method is not None
|
902 |
-
output_parallel = self.quant_method.apply(self, input_parallel)
|
903 |
-
if self.reduce_results and self.tp_size > 1:
|
904 |
-
output_ = tensor_model_parallel_all_reduce(output_parallel)
|
905 |
-
else:
|
906 |
-
output_ = output_parallel
|
907 |
-
|
908 |
-
if not self.skip_bias_add:
|
909 |
-
output = output_ + self.bias if self.bias is not None else output_
|
910 |
-
output_bias = None
|
911 |
-
else:
|
912 |
-
output = output_
|
913 |
-
output_bias = self.bias
|
914 |
-
return output, output_bias
|
915 |
-
|
916 |
-
def extra_repr(self) -> str:
|
917 |
-
s = f"input_features={self.input_size_per_partition}"
|
918 |
-
s += f", output_features={self.output_size}"
|
919 |
-
s += f", bias={self.bias is not None}"
|
920 |
-
s += f", tp_size={self.tp_size}"
|
921 |
-
s += f", reduce_results={self.reduce_results}"
|
922 |
-
return s
|
923 |
-
```
|
924 |
-
|
925 |
|
926 |
## Evaluation
|
927 |
|
|
|
90 |
done
|
91 |
```
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
## Evaluation
|
95 |
|