Update README.md
Browse files
README.md
CHANGED
@@ -13,54 +13,36 @@ tags:
|
|
13 |
* <h3 style="display: inline;">Model Developers:</h3> Neural Magic
|
14 |
|
15 |
Phi-3-mini-128k-instruct quantized to FP8 weights and activations using per-tensor quantization through the [AutoFP8 repository](https://github.com/neuralmagic/AutoFP8), ready for inference with vLLM >= 0.5.0.
|
16 |
-
Calibrated with
|
17 |
Reduces space on disk by ~50%.
|
18 |
Part of the [FP8 LLMs for vLLM collection](https://huggingface.co/collections/neuralmagic/fp8-llms-for-vllm-666742ed2b78b7ac8df13127).
|
19 |
|
20 |
|
21 |
## Usage and Creation
|
22 |
-
Produced using
|
23 |
|
24 |
```python
|
25 |
from datasets import load_dataset
|
26 |
from transformers import AutoTokenizer
|
27 |
-
import numpy as np
|
28 |
-
import torch
|
29 |
|
30 |
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
CONTEXT_LENGTH = 4096
|
36 |
-
NUM_SAMPLES = 512
|
37 |
-
NUM_REPEATS = 1
|
38 |
|
39 |
-
pretrained_model_dir =
|
40 |
-
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=CONTEXT_LENGTH)
|
41 |
tokenizer.pad_token = tokenizer.eos_token
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
|
47 |
-
|
48 |
-
np.random.shuffle(input_ids)
|
49 |
-
input_ids = input_ids.reshape(num_random_samp, CONTEXT_LENGTH)
|
50 |
-
input_ids = torch.tensor(input_ids, dtype=torch.int64).to("cuda")
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
activation_scheme="static",
|
55 |
)
|
56 |
-
|
57 |
-
examples = input_ids
|
58 |
-
|
59 |
-
model = AutoFP8ForCausalLM.from_pretrained(pretrained_model_dir, quantize_config=quantize_config)
|
60 |
-
|
61 |
model.quantize(examples)
|
62 |
-
|
63 |
-
quantized_model_dir = f"{final_model_dir}-FP8"
|
64 |
model.save_quantized(quantized_model_dir)
|
65 |
```
|
66 |
|
@@ -948,11 +930,11 @@ Evaluated on the Open LLM Leaderboard evaluations through vLLM.
|
|
948 |
### Open LLM Leaderboard evaluation scores
|
949 |
| | Phi-3-mini-128k-instruct-FP8 | neuralmagic/Phi-3-mini-128k-instruct-FP8<br>(this model) |
|
950 |
| :------------------: | :----------------------: | :------------------------------------------------: |
|
951 |
-
| arc-c<br>25-shot | 63.65 | 64.
|
952 |
-
| hellaswag<br>10-shot | 79.76 | 79.
|
953 |
-
| mmlu<br>5-shot | 68.10 | 67.
|
954 |
-
| truthfulqa<br>0-shot | 53.97 |
|
955 |
-
| winogrande<br>5-shot | 73.72 |
|
956 |
-
| gsm8k<br>5-shot | 75.59 | 74.
|
957 |
-
| **Average<br>Accuracy** | **69.13** | **68.
|
958 |
-
| **Recovery** | **100%** | **99.
|
|
|
13 |
* <h3 style="display: inline;">Model Developers:</h3> Neural Magic
|
14 |
|
15 |
Phi-3-mini-128k-instruct quantized to FP8 weights and activations using per-tensor quantization through the [AutoFP8 repository](https://github.com/neuralmagic/AutoFP8), ready for inference with vLLM >= 0.5.0.
|
16 |
+
Calibrated with 512 UltraChat samples to achieve 100% performance recovery on the Open LLM Benchmark evaluations.
|
17 |
Reduces space on disk by ~50%.
|
18 |
Part of the [FP8 LLMs for vLLM collection](https://huggingface.co/collections/neuralmagic/fp8-llms-for-vllm-666742ed2b78b7ac8df13127).
|
19 |
|
20 |
|
21 |
## Usage and Creation
|
22 |
+
Produced using [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py).
|
23 |
|
24 |
```python
|
25 |
from datasets import load_dataset
|
26 |
from transformers import AutoTokenizer
|
|
|
|
|
27 |
|
28 |
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
|
29 |
|
30 |
+
pretrained_model_dir = "microsoft/Phi-3-mini-128k-instruct"
|
31 |
+
quantized_model_dir = "Phi-3-mini-128k-instruct-FP8"
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=4096)
|
|
|
34 |
tokenizer.pad_token = tokenizer.eos_token
|
35 |
|
36 |
+
ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512))
|
37 |
+
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
|
38 |
+
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")
|
39 |
|
40 |
+
quantize_config = BaseQuantizeConfig(quant_method="fp8", activation_scheme="static")
|
|
|
|
|
|
|
41 |
|
42 |
+
model = AutoFP8ForCausalLM.from_pretrained(
|
43 |
+
pretrained_model_dir, quantize_config=quantize_config
|
|
|
44 |
)
|
|
|
|
|
|
|
|
|
|
|
45 |
model.quantize(examples)
|
|
|
|
|
46 |
model.save_quantized(quantized_model_dir)
|
47 |
```
|
48 |
|
|
|
930 |
### Open LLM Leaderboard evaluation scores
|
931 |
| | Phi-3-mini-128k-instruct-FP8 | neuralmagic/Phi-3-mini-128k-instruct-FP8<br>(this model) |
|
932 |
| :------------------: | :----------------------: | :------------------------------------------------: |
|
933 |
+
| arc-c<br>25-shot | 63.65 | 64.24 |
|
934 |
+
| hellaswag<br>10-shot | 79.76 | 79.79 |
|
935 |
+
| mmlu<br>5-shot | 68.10 | 67.93 |
|
936 |
+
| truthfulqa<br>0-shot | 53.97 | 53.50 |
|
937 |
+
| winogrande<br>5-shot | 73.72 | 74.11 |
|
938 |
+
| gsm8k<br>5-shot | 75.59 | 74.37 |
|
939 |
+
| **Average<br>Accuracy** | **69.13** | **68.99** |
|
940 |
+
| **Recovery** | **100%** | **99.80%** |
|