metadata
tags:
- fp8
- vllm
Phi-3-mini-128k-instruct-FP8
Model Overview
Model Architecture:
Based on and identical to the Phi-3-mini-128k-instruct architectureModel Optimizations:
Weights and activations quantized to FP8Release Date:
June 29, 2024Model Developers:
Neural Magic
Phi-3-mini-128k-instruct quantized to FP8 weights and activations using per-tensor quantization through the AutoFP8 repository, ready for inference with vLLM >= 0.5.0. Calibrated with 512 UltraChat samples to achieve 100% performance recovery on the Open LLM Benchmark evaluations. Reduces space on disk by ~50%. Part of the FP8 LLMs for vLLM collection.
Usage and Creation
Produced using AutoFP8 with calibration samples from ultrachat.
from datasets import load_dataset
from transformers import AutoTokenizer
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
pretrained_model_dir = "microsoft/Phi-3-mini-128k-instruct"
quantized_model_dir = "Phi-3-mini-128k-instruct-FP8"
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=4096)
tokenizer.pad_token = tokenizer.eos_token
ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512))
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")
quantize_config = BaseQuantizeConfig(quant_method="fp8", activation_scheme="static")
model = AutoFP8ForCausalLM.from_pretrained(
pretrained_model_dir, quantize_config=quantize_config
)
model.quantize(examples)
model.save_quantized(quantized_model_dir)
Evaluated through vLLM>=0.5.1 with the following script:
#!/bin/bash
# Example usage:
# CUDA_VISIBLE_DEVICES=0 ./eval_openllm.sh "neuralmagic/Phi-3-mini-128k-instruct-FP8" "tensor_parallel_size=1,max_model_len=4096,add_bos_token=True,gpu_memory_utilization=0.7"
export MODEL_DIR=${1}
export MODEL_ARGS=${2}
declare -A tasks_fewshot=(
["arc_challenge"]=25
["winogrande"]=5
["truthfulqa_mc2"]=0
["hellaswag"]=10
["mmlu"]=5
["gsm8k"]=5
)
declare -A batch_sizes=(
["arc_challenge"]="auto"
["winogrande"]="auto"
["truthfulqa_mc2"]="auto"
["hellaswag"]="auto"
["mmlu"]=1
["gsm8k"]="auto"
)
for TASK in "${!tasks_fewshot[@]}"; do
NUM_FEWSHOT=${tasks_fewshot[$TASK]}
BATCH_SIZE=${batch_sizes[$TASK]}
lm_eval --model vllm \
--model_args pretrained=$MODEL_DIR,$MODEL_ARGS \
--tasks ${TASK} \
--num_fewshot ${NUM_FEWSHOT} \
--write_out \
--show_config \
--device cuda \
--batch_size ${BATCH_SIZE} \
--output_path="results/${TASK}"
done
Evaluation
Evaluated on the Open LLM Leaderboard evaluations through vLLM.
Open LLM Leaderboard evaluation scores
Phi-3-mini-128k-instruct | neuralmagic/Phi-3-mini-128k-instruct-FP8 (this model) |
|
---|---|---|
arc-c 25-shot |
63.65 | 64.24 |
hellaswag 10-shot |
79.76 | 79.79 |
mmlu 5-shot |
68.10 | 67.93 |
truthfulqa 0-shot |
53.97 | 53.50 |
winogrande 5-shot |
73.72 | 74.11 |
gsm8k 5-shot |
75.59 | 74.37 |
Average Accuracy |
69.13 | 68.99 |
Recovery | 100% | 99.80% |