File size: 5,981 Bytes
b847d03
 
 
 
 
 
 
 
 
fddf461
 
 
 
 
 
 
 
 
 
 
b847d03
fddf461
 
b847d03
fddf461
b847d03
fddf461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b847d03
 
 
 
 
 
 
f722512
 
b847d03
f722512
b847d03
 
f722512
 
 
b847d03
f722512
b847d03
f722512
 
b847d03
 
 
 
 
fddf461
b847d03
fddf461
 
 
 
 
 
 
b847d03
 
fddf461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
tags:
- fp8
- vllm
---

# Phi-3-mini-128k-instruct-FP8

## Model Overview
- **Model Architecture:** Phi-3
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** FP8
  - **Activation quantization:** FP8
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 6/29/2024
- **Version:** 1.0
- **Model Developers:** Neural Magic

Quantized version of [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct).
It achieves an average score of 68.99 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 69.13.

### Model Optimizations

This model was obtained by quantizing the weights and activations of [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) to FP8 data type, ready for inference with vLLM >= 0.5.1.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.

Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a linear scaling per output dimension maps the FP8 representations of the quantized weights and activations.
[AutoFP8](https://github.com/neuralmagic/AutoFP8) is used for quantization with 512 sequences of UltraChat.

## Deployment

### Use with vLLM

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "neuralmagic/Phi-3-mini-128k-instruct-FP8"

sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompts = tokenizer.apply_chat_template(messages, tokenize=False)

llm = LLM(model=model_id)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)
```

vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

## Creation

This model was created by applying [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py), as presented in the code snipet below.
Although AutoFP8 was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoFP8.

```python
from datasets import load_dataset
from transformers import AutoTokenizer

from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig

pretrained_model_dir = "microsoft/Phi-3-mini-128k-instruct"
quantized_model_dir = "Phi-3-mini-128k-instruct-FP8"

tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=4096)
tokenizer.pad_token = tokenizer.eos_token

ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512))
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")

quantize_config = BaseQuantizeConfig(quant_method="fp8", activation_scheme="static")

model = AutoFP8ForCausalLM.from_pretrained(
    pretrained_model_dir, quantize_config=quantize_config
)
model.quantize(examples)
model.save_quantized(quantized_model_dir)
```

## Evaluation

The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Phi-3-mini-128k-instruct-FP8",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \
  --tasks openllm \
  --batch_size auto
```

### Accuracy

#### Open LLM Leaderboard evaluation scores
<table>
  <tr>
   <td><strong>Benchmark</strong>
   </td>
   <td><strong>Phi-3-mini-128k-instruct</strong>
   </td>
   <td><strong>Phi-3-mini-128k-instruct-FP8(this model)</strong>
   </td>
   <td><strong>Recovery</strong>
   </td>
  </tr>
  <tr>
   <td>MMLU (5-shot)
   </td>
   <td>68.10
   </td>
   <td>67.93
   </td>
   <td>99.75%
   </td>
  </tr>
  <tr>
   <td>ARC Challenge (25-shot)
   </td>
   <td>63.65
   </td>
   <td>64.24
   </td>
   <td>100.9%
   </td>
  </tr>
  <tr>
   <td>GSM-8K (5-shot, strict-match)
   </td>
   <td>75.59
   </td>
   <td>74.37
   </td>
   <td>98.38%
   </td>
  </tr>
  <tr>
   <td>Hellaswag (10-shot)
   </td>
   <td>79.76
   </td>
   <td>79.79
   </td>
   <td>100.0%
   </td>
  </tr>
  <tr>
   <td>Winogrande (5-shot)
   </td>
   <td>73.72
   </td>
   <td>74.11
   </td>
   <td>100.5%
   </td>
  </tr>
  <tr>
   <td>TruthfulQA (0-shot)
   </td>
   <td>53.97
   </td>
   <td>53.50
   </td>
   <td>99.12%
   </td>
  </tr>
  <tr>
   <td><strong>Average</strong>
   </td>
   <td><strong>69.13</strong>
   </td>
   <td><strong>68.99</strong>
   </td>
   <td><strong>99.80%</strong>
   </td>
  </tr>
</table>