alexmarques's picture
Update README.md
33c68d0 verified
|
raw
history blame
8.71 kB
---
tags:
- int88
- vllm
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-70B-Instruct
---
# Meta-Llama-3.1-70B-Instruct-quantized.w8a16
## Model Overview
- **Model Architecture:** Meta-Llama-3
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** INT8
- **Intended Use Cases:** Intended for commercial and research use multiple languages. Similarly to [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws).
- **Release Date:** 7/24/2024
- **Version:** 1.0
- **License(s):** Llama3.1
- **Model Developers:** Neural Magic
Quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
It achieves scores within 3.2% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag, Winogrande and TruthfulQA.
### Model Optimizations
This model was obtained by quantizing the weights of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct) to INT8 data type.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT8 and floating point representations of the quantized weights.
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
GPTQ used a 10% damping factor and 256 sequences taken from Neural Magic's [LLM compression calibration dataset](https://huggingface.co/datasets/neuralmagic/LLM_compression_calibration).
## Deployment
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16"
number_gpus = 4
max_model_len = 8192
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below.
```python
from transformers import AutoTokenizer
from datasets import Dataset
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
import random
model_id = "meta-llama/Meta-Llama-3.1-70B-Instruct"
num_samples = 256
max_seq_len = 8192
tokenizer = AutoTokenizer.from_pretrained(model_id)
def preprocess_fn(example):
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.shuffle().select(range(num_samples))
ds = ds.map(preprocess_fn)
examples = [tokenizer(example["text"], padding=False, max_length=max_seq_len, truncation=True) for example in ds]
recipe = GPTQModifier(
targets="Linear",
scheme="W8A16",
ignore=["lm_head"],
dampening_frac=0.1,
)
model = SparseAutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
trust_remote_code=True,
)
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
)
model.save_pretrained("Meta-Llama-3.1-70B-Instruct-quantized.w8a16")
```
## Evaluation
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-70B-Instruct-evals).
**Note:** Results have been updated after Meta modified the chat template.
### Accuracy
#### Open LLM Leaderboard evaluation scores
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>Meta-Llama-3.1-70B-Instruct </strong>
</td>
<td><strong>Meta-Llama-3.1-70B-Instruct-quantized.w8a16 (this model)</strong>
</td>
<td><strong>Recovery</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>83.94
</td>
<td>81.37
</td>
<td>96.9%
</td>
</tr>
<tr>
<td>MMLU (CoT, 0-shot)
</td>
<td>86.23
</td>
<td>83.86
</td>
<td>97.2%
</td>
</tr>
<tr>
<td>ARC Challenge (0-shot)
</td>
<td>93.34
</td>
<td>92.32
</td>
<td>98.9%
</td>
</tr>
<tr>
<td>GSM-8K (CoT, 8-shot, strict-match)
</td>
<td>95.38
</td>
<td>92.34
</td>
<td>96.8%
</td>
</tr>
<tr>
<td>Hellaswag (10-shot)
</td>
<td>86.66
</td>
<td>86.01
</td>
<td>99.3%
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>85.32
</td>
<td>85.56
</td>
<td>100.3%
</td>
</tr>
<tr>
<td>TruthfulQA (0-shot, mc2)
</td>
<td>60.65
</td>
<td>59.39
</td>
<td>97.9%
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>84.50</strong>
</td>
<td><strong>82.98</strong>
</td>
<td><strong>98.2%</strong>
</td>
</tr>
</table>
### Reproduction
The results were obtained using the following commands:
#### MMLU
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
```
#### MMLU-CoT
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=1 \
--tasks mmlu_cot_0shot_llama_3.1_instruct \
--apply_chat_template \
--num_fewshot 0 \
--batch_size auto
```
#### ARC-Challenge
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=1 \
--tasks arc_challenge_llama_3.1_instruct \
--apply_chat_template \
--num_fewshot 0 \
--batch_size auto
```
#### GSM-8K
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=1 \
--tasks gsm8k_cot_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 8 \
--batch_size auto
```
#### Hellaswag
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
--tasks hellaswag \
--num_fewshot 10 \
--batch_size auto
```
#### Winogrande
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
--tasks winogrande \
--num_fewshot 5 \
--batch_size auto
```
#### TruthfulQA
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
--tasks truthfulqa \
--num_fewshot 0 \
--batch_size auto
```