|
--- |
|
tags: |
|
- fp8 |
|
- vllm |
|
--- |
|
|
|
Run with `vllm==0.6.2` on 1xH100: |
|
``` |
|
vllm serve neuralmagic/Llama-3.2-11B-Vision-Instruct-FP8-dynamic --enforce-eager --max-num-seqs 16 |
|
``` |
|
|
|
## Evaluation |
|
|
|
``` |
|
TBD |
|
``` |
|
|
|
## Creation |
|
https://github.com/vllm-project/llm-compressor/pull/185 |
|
|
|
```python |
|
from transformers import AutoProcessor, MllamaForConditionalGeneration |
|
|
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
from llmcompressor.transformers import oneshot, wrap_hf_model_class |
|
|
|
MODEL_ID = "meta-llama/Llama-3.2-11B-Vision-Instruct" |
|
|
|
# Load model. |
|
model_class = wrap_hf_model_class(MllamaForConditionalGeneration) |
|
model = model_class.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto") |
|
processor = AutoProcessor.from_pretrained(MODEL_ID) |
|
|
|
# Configure the quantization algorithm and scheme. |
|
# In this case, we: |
|
# * quantize the weights to fp8 with per channel via ptq |
|
# * quantize the activations to fp8 with dynamic per token |
|
recipe = QuantizationModifier( |
|
targets="Linear", |
|
scheme="FP8_DYNAMIC", |
|
ignore=["re:.*lm_head", "re:multi_modal_projector.*", "re:vision_model.*"], |
|
) |
|
|
|
# Apply quantization and save to disk in compressed-tensors format. |
|
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic" |
|
oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR) |
|
processor.save_pretrained(SAVE_DIR) |
|
|
|
# Confirm generations of the quantized model look sane. |
|
print("========== SAMPLE GENERATION ==============") |
|
input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to("cuda") |
|
output = model.generate(input_ids, max_new_tokens=20) |
|
print(processor.decode(output[0])) |
|
print("==========================================") |
|
``` |