Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic
Model Overview
- Model Architecture: Llama-3.1-Nemotron
- Input: Text
- Output: Text
- Model Optimizations:
- Weight quantization: FP8
- Activation quantization: FP8
- Intended Use Cases: Intended for commercial and research use in multiple languages. Similarly to Llama-3.1-Nemotron-70B-Instruct, this model is intended for assistant-like chat.
- Out-of-scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- Release Date: 10/17/2024
- Version: 1.0
- License(s): llama3.1
- Model Developers: Neural Magic
This model is a quantized version of Llama-3.1-Nemotron-70B-Instruct. It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model, including multiple-choice, math reasoning, and open-ended text generation. Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic achieves 99.41% recovery for the Arena-Hard evaluation, 100% for OpenLLM v1 (using Meta's prompting when available), and ToDo for OpenLLM v2.
Model Optimizations
This model was obtained by quantizing the weights and activations of Llama-3.1-Nemotron-70B-Instruct to FP8 data type, ready for inference with vLLM built from source. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the FP8 representations of the quantized weights and activations. Activations are also quantized on a per-token dynamic basis.
Deployment
Use with vLLM
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic"
number_gpus = 2
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.
Creation
This model was created by applying LLM-Compressor, as presented in the code snipet below.
import torch
from transformers import AutoTokenizer
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.transformers.compression.helpers import ( # noqa
calculate_offload_device_map,
custom_offload_device_map,
)
recipe = """
quant_stage:
quant_modifiers:
QuantizationModifier:
ignore: ["lm_head"]
config_groups:
group_0:
weights:
num_bits: 8
type: float
strategy: channel
dynamic: false
symmetric: true
input_activations:
num_bits: 8
type: float
strategy: token
dynamic: true
symmetric: true
targets: ["Linear"]
"""
model_stub = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
model_name = model_stub.split("/")[-1]
device_map = calculate_offload_device_map(
model_stub, reserve_for_hessians=False, num_gpus=1, torch_dtype="auto"
)
model = SparseAutoModelForCausalLM.from_pretrained(
model_stub, torch_dtype="auto", device_map=device_map
)
output_dir = f"./{model_name}-FP8-dynamic"
oneshot(
model=model,
recipe=recipe,
output_dir=output_dir,
save_compressed=True,
tokenizer=AutoTokenizer.from_pretrained(model_stub),
)
Evaluation
This model was evaluated on the well-known Arena-Hard, OpenLLM v1, and OpenLLM v2. In all cases, model outputs were generated with the vLLM engine.
Arena-Hard evaluations were conducted using the Arena-Hard-Auto repository.
OpenLLM v1 and v2 evaluations were conducted using Neural Magic's fork of lm-evaluation-harness (branch llama_3.1_instruct). This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of Meta-Llama-3.1-Instruct-evals and a few fixes to OpenLLM v2 tasks.
Accuracy
Benchmark | nvidia/Llama-3.1-Nemotron-70B-Instruct-HF | neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic (this model) |
Recovery |
Arena Hard | 85.0 | 84.5 | 99.41% |
OpenLLM Leaderboard v1 | 80.1 | 80.3 | 100.2% |
OpenLLM Leaderboard v2 | 40.2 | 39.8 | 99.0% |
Benchmark (per-task breakdown) | nvidia/Llama-3.1-Nemotron-70B-Instruct-HF | neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic (this model) | Recovery |
OpenLLM v1 | |||
MMLU (5-shot) | 83.51 | 83.49 | 99.97% |
MMLU-cot (0-shot) | 85.89 | 86.18 | 100.33% |
ARC Challenge (0-shot) | 93.09 | 93.09 | 100% |
GSM-8K-cot (8-shot, strict-match) | 70.13 | 69.98 | 99.78% |
Hellaswag (10-shot) | 87.39 | 87.22 | 99.80% |
Winogrande (5-shot) | 84.93 | 84.93 | 100% |
TruthfulQA (0-shot, mc2) | 55.97 | 57.12 | 102.05% |
Average | 80.1 | 80.3 | 100.2% |
OpenLLM v2 | |||
MMLU-Pro (5-shot) | 43.45 | 42.99 | 98.94% |
IFEval (0-shot) | 73.32 | 74.08 | 101.02% |
BBH (3-shot) | 47.12 | 46.88 | 99.5% |
Math-lvl-5 (4-shot) | 23.85 | 21.78 | 91.32% |
MuSR (0-shot) | 13.5 | 13.35 | 98.88% |
Average | 40.2 | 39.8 | 99% |
Reproduction
The results were obtained using the following commands:
MMLU
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
--tasks mmlu \
--num_fewshot 5 \
--batch_size auto
MMLU-cot
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
--tasks mmlu_cot_0shot_llama_3.1_instruct \
--apply_chat_template \
--num_fewshot 0 \
--batch_size auto
ARC-Challenge
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
--tasks arc_challenge_llama_3.1_instruct \
--apply_chat_template \
--num_fewshot 0 \
--batch_size auto
GSM-8K
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
--tasks gsm8k_cot_llama_3.1_instruct \
--apply_chat_template \
--fewshot_as_multiturn \
--num_fewshot 8 \
--batch_size auto
Hellaswag
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
--tasks hellaswag \
--num_fewshot 10 \
--batch_size auto
Winogrande
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
--tasks winogrande \
--num_fewshot 5 \
--batch_size auto
TruthfulQA
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
--tasks truthfulqa \
--num_fewshot 0 \
--batch_size auto
OpenLLM v2
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True \
--apply_chat_template \
--fewshot_as_multiturn \
--tasks leaderboard \
--batch_size auto
- Downloads last month
- 9,152
Model tree for neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic
Base model
meta-llama/Llama-3.1-70B