|
--- |
|
pipeline_tag: zero-shot-classification |
|
base_model: laion/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K |
|
inference: false |
|
tags: |
|
- deepsparse |
|
--- |
|
This is a [SparseML](https://github.com/neuralmagic/sparseml) quantized version of https://huggingface.co/laion/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K that is ready to use with [DeepSparse](https://github.com/neuralmagic/deepsparse). It achieves 71.1% one-shot accuracy on ImageNet and 95.6% one-shot accuracy on Imagenette. |
|
|
|
Notebook for basic usage: [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ZvU9ZSHJKSeJyH5bgxo_A-GSVIUcSt2E?usp=sharing) |
|
Notebook for Imagenette evaluation: [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1-Duq0YNtjzOnmuXCYo-5DDiOzeCItXpN?usp=sharing) |
|
|
|
## Setup for usage |
|
First, install DeepSparse with extensions for CLIP: |
|
``` |
|
pip install deepsparse-nightly[clip]>=1.7.0.20231210 |
|
``` |
|
|
|
Download some test images of a church, a dog, and elephants: |
|
``` |
|
wget -O basilica.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolo/sample_images/basilica.jpg |
|
wget -O buddy.jpeg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/tests/deepsparse/pipelines/sample_images/buddy.jpeg |
|
wget -O thailand.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolact/sample_images/thailand.jpg |
|
``` |
|
|
|
For this model there is a second input that is the length of tokens, so run this input override code before making a text pipeline: |
|
```python |
|
import numpy as np |
|
from deepsparse.clip import CLIPTextPipeline |
|
|
|
def custom_process_inputs(self, inputs): |
|
if not isinstance(inputs.text, list): |
|
inputs.text = [inputs.text] |
|
if not isinstance(inputs.text[0], str): |
|
return inputs.text |
|
tokens = [np.array(t).astype(np.int32) for t in self.tokenizer(inputs.text)] |
|
tokens = np.stack(tokens, axis=0) |
|
tokens_lengths = np.array(tokens.shape[0] * [tokens.shape[1] - 1]) |
|
return [tokens, tokens_lengths] |
|
|
|
# This overrides the process_inputs function globally for all CLIPTextPipeline classes |
|
CLIPTextPipeline.process_inputs = custom_process_inputs |
|
``` |
|
|
|
## Text embedding pipeline |
|
|
|
Here is an example of how to create and use a [DeepSparse pipeline for text embeddings](https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/clip/text_pipeline.py). |
|
```python |
|
from deepsparse import Pipeline |
|
from huggingface_hub import snapshot_download |
|
|
|
# Download the model from HF |
|
model_folder = snapshot_download(repo_id="neuralmagic/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K-quant-ds") |
|
|
|
text_embed_pipeline = Pipeline.create(task="clip_text", model_path=model_folder + "/textual.onnx") |
|
|
|
text = ["ice cream", "an elephant", "a dog", "a building", "a church"] |
|
|
|
embeddings = text_embed_pipeline(text=text).text_embeddings |
|
for i in range(len(embeddings)): |
|
print(embeddings[i].shape) |
|
print(embeddings[i]) |
|
``` |
|
|
|
## Image embedding pipeline |
|
|
|
Here is an example of how to create and use a [DeepSparse pipeline for image embeddings](https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/clip/visual_pipeline.py). |
|
```python |
|
from deepsparse import Pipeline |
|
from huggingface_hub import snapshot_download |
|
|
|
# Download the model from HF |
|
model_folder = snapshot_download(repo_id="neuralmagic/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K-quant-ds") |
|
|
|
image_embed_pipeline = Pipeline.create(task="clip_visual", model_path=model_folder + "/visual.onnx") |
|
|
|
images = ["basilica.jpg", "buddy.jpeg", "thailand.jpg"] |
|
|
|
embeddings = image_embed_pipeline(images=images).image_embeddings |
|
for i in range(len(embeddings)): |
|
print(embeddings[i].shape) |
|
print(embeddings[i]) |
|
``` |
|
|
|
## Zero-shot image classification pipeline |
|
|
|
Since CLIP trained both the text and image embedding models in tandem, we can generate embeddings for both and relate them together without retraining. Here is an example of how to create and use a [DeepSparse pipeline for zero-shot image classification](https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/clip/zeroshot_pipeline.py). |
|
```python |
|
from deepsparse import Pipeline |
|
from deepsparse.clip import ( |
|
CLIPTextInput, |
|
CLIPVisualInput, |
|
CLIPZeroShotInput |
|
) |
|
from huggingface_hub import snapshot_download |
|
|
|
# Download the model from HF |
|
model_folder = snapshot_download(repo_id="neuralmagic/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K-quant-ds") |
|
|
|
possible_classes = ["ice cream", "an elephant", "a dog", "a building", "a church"] |
|
images = ["basilica.jpg", "buddy.jpeg", "thailand.jpg"] |
|
|
|
# Load the model into DeepSparse |
|
pipeline = Pipeline.create( |
|
task="clip_zeroshot", |
|
visual_model_path=model_folder + "/visual.onnx", |
|
text_model_path=model_folder + "/textual.onnx" |
|
) |
|
|
|
# Infer |
|
output = pipeline( |
|
image=CLIPVisualInput(images=images), |
|
text=CLIPTextInput(text=possible_classes), |
|
).text_scores |
|
|
|
for i in range(len(output)): |
|
prediction = possible_classes[np.argmax(output[i])] |
|
print(f"Image {images[i]} is a picture of {prediction}") |
|
|
|
""" |
|
Image basilica.jpg is a picture of a church |
|
Image buddy.jpeg is a picture of a dog |
|
Image thailand.jpg is a picture of an elephant |
|
""" |
|
``` |