|
--- |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
base_model: google/pegasus-x-base |
|
model-index: |
|
- name: pegasus-x-base-finetuned-multi-news |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pegasus-x-base-finetuned-multi-news |
|
|
|
This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3695 |
|
- Rouge1: 39.3711 |
|
- Rouge2: 13.3688 |
|
- Rougel: 22.2825 |
|
- Rougelsum: 33.911 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 7 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 2.7281 | 1.0 | 625 | 2.3958 | 37.1778 | 12.486 | 21.2186 | 31.8237 | |
|
| 2.4474 | 2.0 | 1250 | 2.3748 | 37.9969 | 12.951 | 21.7277 | 32.5926 | |
|
| 2.3396 | 3.0 | 1875 | 2.3739 | 38.8944 | 13.3746 | 22.1289 | 33.5442 | |
|
| 2.2637 | 4.0 | 2500 | 2.3645 | 38.2964 | 13.048 | 21.9356 | 32.8345 | |
|
| 2.2019 | 5.0 | 3125 | 2.3699 | 38.8395 | 13.1676 | 22.0546 | 33.4517 | |
|
| 2.1603 | 6.0 | 3750 | 2.3641 | 39.3608 | 13.5131 | 22.3133 | 33.8639 | |
|
| 2.1346 | 7.0 | 4375 | 2.3695 | 39.3711 | 13.3688 | 22.2825 | 33.911 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|