|
--- |
|
language: |
|
- tr |
|
tags: |
|
- translation |
|
license: mit |
|
--- |
|
|
|
## About the model |
|
It is a Turkish bert-based model created to determine the types of bullying that people use against each other in social media. |
|
Included classes; |
|
|
|
- Nötr |
|
- Kızdırma/Hakaret |
|
- Cinsiyetçilik |
|
- Irkçılık |
|
|
|
3388 tweets were used in the training of the model. Accordingly, the success rates in education are as follows; |
|
|
|
| | Cinsiyetçilik | Irkçılık | Kızdırma | Nötr | |
|
| ------ | ------ | ------ | ------ | ------ | |
|
| Precision | 0.925 | 0.878 | 0.824 | 0.915 | |
|
| Recall | 0.831 | 0.896 | 0.843 | 0.935 | |
|
| F1 Score | 0.875 | 0.887 | 0.833 | 0.925 | |
|
Accuracy : 0.886 |
|
|
|
## Example |
|
```sh |
|
from transformers import AutoTokenizer, TextClassificationPipeline, TFBertForSequenceClassification |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("nanelimon/bert-base-turkish-bullying") |
|
model = TFBertForSequenceClassification.from_pretrained("nanelimon/bert-base-turkish-bullying", from_pt=True) |
|
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer) |
|
|
|
print(pipe('Bu bir denemedir hadi sende dene!')) |
|
``` |
|
Result; |
|
```sh |
|
[{'label': 'Nötr', 'score': 0.999175488948822}] |
|
``` |
|
- label= It shows which class the sent Turkish text belongs to according to the model. |
|
- score= It shows the compliance rate of the Turkish text sent to the label found. |
|
|
|
## Authors |
|
- Seyma SARIGIL: [email protected] |
|
- Elif SARIGIL KARA: [email protected] |
|
- Murat KOKLU: [email protected] |
|
- Alaaddin Erdinç DAL: [email protected] |
|
|
|
|
|
## License |
|
|
|
gpl-3.0 |
|
|
|
**Free Software, Hell Yeah!** |