distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0000
- Accuracy: {'accuracy': 1.0}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 171 | 0.0001 | {'accuracy': 1.0} |
No log | 2.0 | 342 | 0.0001 | {'accuracy': 1.0} |
0.0245 | 3.0 | 513 | 0.0001 | {'accuracy': 1.0} |
0.0245 | 4.0 | 684 | 0.0000 | {'accuracy': 1.0} |
0.0245 | 5.0 | 855 | 0.0001 | {'accuracy': 1.0} |
0.0 | 6.0 | 1026 | 0.0000 | {'accuracy': 1.0} |
0.0 | 7.0 | 1197 | 0.0000 | {'accuracy': 1.0} |
0.0 | 8.0 | 1368 | 0.0000 | {'accuracy': 1.0} |
0.0 | 9.0 | 1539 | 0.0000 | {'accuracy': 1.0} |
0.0 | 10.0 | 1710 | 0.0000 | {'accuracy': 1.0} |
Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
- Downloads last month
- 6
Model tree for myrtotsok/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased