|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5_recommendation_jobs_skills |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5_recommendation_jobs_skills |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4429 |
|
- Rouge1: 52.6616 |
|
- Rouge2: 30.0723 |
|
- Rougel: 52.5572 |
|
- Rougelsum: 52.6440 |
|
- Gen Len: 3.8132 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.01 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 187 | 0.5664 | 38.3484 | 15.8800 | 38.3864 | 38.3164 | 3.6202 | |
|
| No log | 2.0 | 375 | 0.5174 | 43.9418 | 21.8366 | 43.8970 | 43.9036 | 3.5222 | |
|
| 0.9323 | 3.0 | 562 | 0.4944 | 46.3290 | 24.6659 | 46.2111 | 46.2578 | 3.6591 | |
|
| 0.9323 | 4.0 | 750 | 0.4788 | 47.5516 | 24.5615 | 47.4347 | 47.4707 | 3.6833 | |
|
| 0.9323 | 5.0 | 937 | 0.4788 | 48.2406 | 25.5062 | 48.1735 | 48.2161 | 3.6553 | |
|
| 0.4409 | 6.0 | 1125 | 0.4614 | 49.5737 | 27.1738 | 49.4533 | 49.5766 | 3.6802 | |
|
| 0.4409 | 7.0 | 1312 | 0.4610 | 50.6072 | 27.7939 | 50.4005 | 50.5340 | 3.7175 | |
|
| 0.3878 | 8.0 | 1500 | 0.4523 | 51.0302 | 28.5195 | 50.9143 | 50.9516 | 3.6693 | |
|
| 0.3878 | 9.0 | 1687 | 0.4474 | 51.6087 | 29.4035 | 51.4667 | 51.5390 | 3.7105 | |
|
| 0.3878 | 10.0 | 1875 | 0.4488 | 52.0192 | 29.9305 | 51.8988 | 51.9678 | 3.8031 | |
|
| 0.3437 | 11.0 | 2062 | 0.4468 | 52.1859 | 29.5148 | 52.1171 | 52.2237 | 3.7136 | |
|
| 0.3437 | 12.0 | 2250 | 0.4438 | 51.8951 | 28.7655 | 51.8052 | 51.8384 | 3.7813 | |
|
| 0.3437 | 13.0 | 2437 | 0.4466 | 52.0524 | 29.4990 | 51.9942 | 52.0485 | 3.7198 | |
|
| 0.3156 | 14.0 | 2625 | 0.4443 | 52.2304 | 29.5992 | 52.1425 | 52.2578 | 3.6903 | |
|
| 0.3156 | 14.96 | 2805 | 0.4429 | 52.6616 | 30.0723 | 52.5572 | 52.6440 | 3.8132 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.0 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.3 |
|
|